Vector profile and gauge invariant observables of string field theory solutions for constant magnetic field background

  • Nobuyuki Ishibashi
  • Isao Kishimoto
  • Toru Masuda
  • Tomohiko TakahashiEmail author
Open Access
Regular Article - Theoretical Physics


We study profiles and gauge invariant observables of classical solutions corresponding to a constant magnetic field on a torus in open string field theory. We numerically find that the profile is not discontinuous on the torus, although the solution describes topologically nontrivial configurations in the context of low energy effective theory. From the gauge invariant observables, we show that the solution provide correct couplings of closed strings to a D-brane with constant magnetic field.


Bosonic Strings String Field Theory D-branes Tachyon Condensation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T. Erler and C. Maccaferri, String field theory solution for any open string background, JHEP 10 (2014) 029 [arXiv:1406.3021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Ishibashi, I. Kishimoto and T. Takahashi, String field theory solution corresponding to constant background magnetic field, PTEP 2017 (2017) 013B06 [arXiv:1610.05911] [INSPIRE].
  3. [3]
    B. Zwiebach, Interpolating string field theories, Mod. Phys. Lett. A 7 (1992) 1079 [hep-th/9202015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Erler and M. Schnabl, A simple analytic solution for tachyon condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Abouelsaood, C.G. Callan Jr., C.R. Nappi and S.A. Yost, Open strings in background gauge fields, Nucl. Phys. B 280 (1987) 599 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G.T. Horowitz and A. Strominger, Translations as inner derivations and associativity anomalies in open string field theory, Phys. Lett. B 185 (1987) 45 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    T. Kawano, I. Kishimoto and T. Takahashi, Gauge invariant overlaps for classical solutions in open string field theory, Nucl. Phys. B 803 (2008) 135 [arXiv:0804.1541] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge UNiversity Press, Cambridge U.K. (1998).Google Scholar
  9. [9]
    H. Grosse, C. Klimčík and P. Prešnajder, Topologically nontrivial field configurations in noncommutative geometry, Commun. Math. Phys. 178 (1996) 507 [hep-th/9510083] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    E. Witten, Overview of k-theory applied to strings, Int. J. Mod. Phys. A 16 (2001) 693 [hep-th/0007175] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    U. Carow-Watamura, H. Steinacker and S. Watamura, Monopole bundles over fuzzy complex projective spaces, J. Geom. Phys. 54 (2005) 373 [hep-th/0404130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    N. Ishibashi, p-branes from (p − 2)-branes in the bosonic string theory, Nucl. Phys. B 539 (1999) 107 [hep-th/9804163] [INSPIRE].
  14. [14]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    F. Sugino, Witten’s open string field theory in constant B field background, JHEP 03 (2000) 017 [hep-th/9912254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Kawano and T. Takahashi, Open string field theory on noncommutative space, Prog. Theor. Phys. 104 (2000) 459 [hep-th/9912274] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Nobuyuki Ishibashi
    • 1
  • Isao Kishimoto
    • 2
  • Toru Masuda
    • 3
    • 4
  • Tomohiko Takahashi
    • 5
    Email author
  1. 1.Tomonaga Center for the History of the UniverseUniversity of TsukubaTsukubaJapan
  2. 2.Faculty of EducationNiigata UniversityNiigataJapan
  3. 3.CEICO, Institute of Physics of the Czech Academy of SciencesPrague 8Czech Republic
  4. 4.CORE of STEMNara Women’s UniversityNaraJapan
  5. 5.Department of PhysicsNara Women’s UniversityNaraJapan

Personalised recommendations