Advertisement

Sub-TeV quintuplet minimal dark matter with left-right symmetry

  • Sanjib Kumar Agarwalla
  • Kirtiman Ghosh
  • Ayon Patra
Open Access
Regular Article - Theoretical Physics
  • 34 Downloads

Abstract

A detailed study of a fermionic quintuplet dark matter in a left-right symmetric scenario is performed in this article. The minimal quintuplet dark matter model is highly constrained from the WMAP dark matter relic density (RD) data. To elevate this constraint, an extra singlet scalar is introduced. It introduces a host of new annihilation and co-annihilation channels for the dark matter, allowing even sub-TeV masses. The phenomenology of this singlet scalar is studied in detail in the context of the Large Hadron Collider (LHC) experiment. The production and decay of this singlet scalar at the LHC give rise to interesting resonant di-Higgs or diphoton final states. We also constrain the RD allowed parameter space of this model in light of the ATLAS bounds on the resonant di-Higgs and diphoton cross-sections.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  2. [2]
    J. Heeck and S. Patra, Minimal left-right symmetric dark matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. Ko and T. Nomura, SU(2)L × SU(2)R minimal dark matter with 2 TeV W′, Phys. Lett. B 753 (2016) 612 [arXiv:1510.07872] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    C. Garcia-Cely and J. Heeck, Phenomenology of left-right symmetric dark matter, arXiv:1512.03332 [INSPIRE].
  5. [5]
    S.K. Agarwalla, K. Ghosh and A. Patra, LHC diphoton excess in a left-right symmetric model with minimal dark matter, arXiv:1607.03878 [INSPIRE].
  6. [6]
    N. Maru, N. Okada and S. Okada, Fermionic minimal dark matter in 5D gauge-Higgs unification, Phys. Rev. D 96 (2017) 115023 [arXiv:1801.00686] [INSPIRE].ADSGoogle Scholar
  7. [7]
    K. Kumericki, I. Picek and B. Radovcic, TeV-scale seesaw with quintuplet fermions, Phys. Rev. D 86 (2012) 013006 [arXiv:1204.6599] [INSPIRE].ADSGoogle Scholar
  8. [8]
    Y. Yu, C.-X. Yue and S. Yang, Signatures of the quintuplet leptons at the LHC, Phys. Rev. D 91 (2015) 093003 [arXiv:1502.02801] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].ADSGoogle Scholar
  10. [10]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  11. [11]
    M.A.B. Beg and H.S. Tsao, Strong P, T noninvariances in a superweak theory, Phys. Rev. Lett. 41 (1978) 278 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.N. Mohapatra and G. Senjanović, Natural suppression of strong P and T noninvariance, Phys. Lett. B 79 (1978) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K.S. Babu and R.N. Mohapatra, A solution to the strong CP problem without an axion, Phys. Rev. D 41 (1990) 1286 [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.M. Barr, D. Chang and G. Senjanović, Strong CP problem and parity, Phys. Rev. Lett. 67 (1991) 2765 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.N. Mohapatra and A. Rasin, Simple supersymmetric solution to the strong CP problem, Phys. Rev. Lett. 76 (1996) 3490 [hep-ph/9511391] [INSPIRE].
  16. [16]
    R. Kuchimanchi, Solution to the strong CP problem: supersymmetry with parity, Phys. Rev. Lett. 76 (1996) 3486 [hep-ph/9511376] [INSPIRE].
  17. [17]
    R.N. Mohapatra, A. Rasin and G. Senjanović, P , C and strong CP in left-right supersymmetric models, Phys. Rev. Lett. 79 (1997) 4744 [hep-ph/9707281] [INSPIRE].
  18. [18]
    K.S. Babu, B. Dutta and R.N. Mohapatra, Solving the strong CP and the SUSY phase problems with parity symmetry, Phys. Rev. D 65 (2002) 016005 [hep-ph/0107100] [INSPIRE].
  19. [19]
    R. Kuchimanchi, P/CP conserving CP/P violation solves strong CP problem, Phys. Rev. D 82 (2010) 116008 [arXiv:1009.5961] [INSPIRE].
  20. [20]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
  21. [21]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  22. [22]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].Google Scholar
  23. [23]
    O. Sawada and A. Sugamoto eds., Proceedings: workshop on the unified theories and the baryon number in the universe, Natl. Lab. High Energy Phys., Tsukuba Japan, (1979) [INSPIRE].
  24. [24]
    M. Levy, J.L. Basdevant, D. Speiser, J. Weyers, R. Gastmans and M. Jacob eds., Quarks and leptons. Proceedings, summer institute, Cargese France, 929 July 1979, NATO Sci. Ser. B 61 (1980) 1 [INSPIRE].
  25. [25]
    P. Van Nieuwenhuizen and D.Z. Freedman eds., Supergravity. proceedings, workshop at Stony Brook, 2729 September 1979, North-Holland, Amsterdam Netherlands, (1979) [INSPIRE].
  26. [26]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
  28. [28]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  29. [29]
    G. Ecker, W. Grimus and H. Neufeld, Higgs induced flavor changing neutral interactions in SU(2)L × SU(2)R × U(1), Phys. Lett. B 127 (1983) 365 [Erratum ibid. B 132 (1983) 467] [INSPIRE].
  30. [30]
    R.N. Mohapatra, G. Senjanović and M.D. Tran, Strangeness changing processes and the limit on the right-handed gauge boson mass, Phys. Rev. D 28 (1983) 546 [INSPIRE].ADSGoogle Scholar
  31. [31]
    M.E. Pospelov, FCNC in left-right symmetric theories and constraints on the right-handed scale, Phys. Rev. D 56 (1997) 259 [hep-ph/9611422] [INSPIRE].
  32. [32]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-right symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [INSPIRE].ADSGoogle Scholar
  34. [34]
    LUX collaboration, M.C. Carmona-Benitez et al., First results of the LUX dark matter experiment, Nucl. Part. Phys. Proc. 273-275 (2016) 309 [INSPIRE].
  35. [35]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  36. [36]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  37. [37]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].
  38. [38]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].ADSGoogle Scholar
  39. [39]
    ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for diboson resonances with boson-tagged jets in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 777 (2018) 91 [arXiv:1708.04445] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of Physics, Sachivalaya MargBhubaneswarIndia
  2. 2.Homi Bhabha National Institute, Training School ComplexMumbaiIndia
  3. 3.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations