Advertisement

Higher-order Skyrme hair of black holes

  • Sven Bjarke Gudnason
  • Muneto Nitta
Open Access
Regular Article - Theoretical Physics

Abstract

Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives, respectively, and are roughly the Skyrme-term squared and the so-called BPS-Skyrme-term squared. In the twelfth-order model we find that the lower branches, which are normally unstable, become stable in the limit where the Skyrme term is turned off. We check this claim with a linear stability analysis. Finally, we find for a certain range of the gravitational coupling and horizon radius, that the twelfth-order model contains 4 solutions as opposed to 2. More surprisingly, the lowest part of the would-be unstable branch turns out to be the stable one of the 4 solutions.

Keywords

Black Holes Solitons Monopoles and Instantons Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Lückock and I. Moss, Black holes have skyrmion hair, Phys. Lett. B 176 (1986) 341 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N.K. Glendenning, T. Kodama and F.R. Klinkhamer, Skyrme topological soliton coupled to gravity, Phys. Rev. D 38 (1988) 3226 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Droz, M. Heusler and N. Straumann, New black hole solutions with hair, Phys. Lett. B 268 (1991) 371 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Heusler, S. Droz and N. Straumann, Stability analysis of selfgravitating skyrmions, Phys. Lett. B 271 (1991) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Heusler, S. Droz and N. Straumann, Linear stability of Einstein Skyrme black holes, Phys. Lett. B 285 (1992) 21 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    P. Bizon and T. Chmaj, Gravitating skyrmions, Phys. Lett. B 297 (1992) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M.S. Volkov and D.V. Gal’tsov, Gravitating non-Abelian solitons and black holes with Yang-Mills fields, Phys. Rept. 319 (1999) 1 [hep-th/9810070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Shiiki and N. Sawado, Black holes with Skyrme hair, gr-qc/0501025 [INSPIRE].
  9. [9]
    T.H.R. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S.B. Gudnason, M. Nitta and N. Sawado, Gravitating BPS skyrmions, JHEP 12 (2015) 013 [arXiv:1510.08735] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  14. [14]
    C. Adam, O. Kichakova, Ya. Shnir and A. Wereszczynski, Hairy black holes in the general Skyrme model, Phys. Rev. D 94 (2016) 024060 [arXiv:1605.07625] [INSPIRE].
  15. [15]
    S.B. Gudnason, M. Nitta and N. Sawado, Black hole skyrmion in a generalized Skyrme model, JHEP 09 (2016) 055 [arXiv:1605.07954] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    G.S. Adkins and C.R. Nappi, Stabilization of chiral solitons via vector mesons, Phys. Lett. B 137 (1984) 251 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Jackson, A.D. Jackson, A.S. Goldhaber, G.E. Brown and L.C. Castillejo, A modified skyrmion, Phys. Lett. B 154 (1985) 101 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691 (2010) 105 [arXiv:1001.4544] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at large N c, Phys. Rev. D 82 (2010) 085015 [arXiv:1007.1567] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S.B. Gudnason, M. Nitta and S. Sasaki, A supersymmetric Skyrme model, JHEP 02 (2016) 074 [arXiv:1512.07557] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S.B. Gudnason, M. Nitta and S. Sasaki, Topological solitons in the supersymmetric Skyrme model, JHEP 01 (2017) 014 [arXiv:1608.03526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S.B. Gudnason and M. Nitta, Incarnations of skyrmions, Phys. Rev. D 90 (2014) 085007 [arXiv:1407.7210] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S.B. Gudnason and M. Nitta, Fractional skyrmions and their molecules, Phys. Rev. D 91 (2015) 085040 [arXiv:1502.06596] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C. Adam, M. Haberichter, T. Romanczukiewicz and A. Wereszczynski, Radial vibrations of BPS skyrmions, Phys. Rev. D 94 (2016) 096013 [arXiv:1607.04286] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, On the spin excitation energy of the nucleon in the Skyrme model, Int. J. Mod. Phys. E 25 (2016) 1650097 [arXiv:1608.00979] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.B. Gudnason, B. Zhang and N. Ma, Generalized Skyrme model with the loosely bound potential, Phys. Rev. D 94 (2016) 125004 [arXiv:1609.01591] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Adam, M. Haberichter, T. Romanczukiewicz and A. Wereszczynski, Roper resonances and quasi-normal modes of skyrmions, JHEP 03 (2018) 023 [arXiv:1710.00837] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.B. Gudnason and M. Nitta, A higher-order Skyrme model, JHEP 09 (2017) 028 [arXiv:1705.03438] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    L. Marleau, The Skyrme model and higher order terms, Phys. Lett. B 235 (1990) 141 [Erratum ibid. B 244 (1990) 580] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Marleau, Modifying the Skyrme model: pion mass and higher derivatives, Phys. Rev. D 43 (1991) 885 [INSPIRE].ADSGoogle Scholar
  31. [31]
    L. Marleau, All orders skyrmions, Phys. Rev. D 45 (1992) 1776 [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    N. Shiiki and N. Sawado, Black hole skyrmions with negative cosmological constant, Phys. Rev. D 71 (2005) 104031 [gr-qc/0502107] [INSPIRE].
  33. [33]
    N. Shiiki and N. Sawado, Regular and black hole solutions in the Einstein-Skyrme theory with negative cosmological constant, Class. Quant. Grav. 22 (2005) 3561 [gr-qc/0503123] [INSPIRE].
  34. [34]
    I. Perapechka and Y. Shnir, Generalized skyrmions and hairy black holes in asymptotically AdS 4 spacetime, Phys. Rev. D 95 (2017) 025024 [arXiv:1612.01914] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Y. Brihaye and T. Delsate, Skyrmion and Skyrme-black holes in de Sitter spacetime, Mod. Phys. Lett. A 21 (2006) 2043 [hep-th/0512339] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S. Zajac, Late-time evolution of the gravitating skyrmion, Acta Phys. Polon. B 40 (2009) 1617 [arXiv:0906.4322] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Zajac, Late-time tails of self-gravitating skyrmions, Acta Phys. Polon. B 42 (2011) 249 [arXiv:1001.4818] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    N. Shiiki, N. Sawado and S. Oryu, Collective quantisation of a gravitating skyrmion, Phys. Rev. D 70 (2004) 114023 [hep-ph/0409054] [INSPIRE].
  39. [39]
    N. Sawado and N. Shiiki, Axially symmetric black hole skyrmions, eConf C 0306234 (2003) 1442 [gr-qc/0307115] [INSPIRE].
  40. [40]
    N. Sawado, N. Shiiki, K.-I. Maeda and T. Torii, Regular and black hole skyrmions with axisymmetry, Gen. Rel. Grav. 36 (2004) 1361 [gr-qc/0401020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    H. Sato, N. Sawado and N. Shiiki, Collective quantization of axially symmetric gravitating B = 2 skyrmion, Phys. Rev. D 75 (2007) 014011 [hep-th/0609196] [INSPIRE].ADSGoogle Scholar
  42. [42]
    T. Ioannidou, B. Kleihaus and J. Kunz, Spinning gravitating skyrmions, Phys. Lett. B 643 (2006) 213 [gr-qc/0608110] [INSPIRE].
  43. [43]
    I. Perapechka and Y. Shnir, Spinning gravitating skyrmions in a generalized Einstein-Skyrme model, Phys. Rev. D 96 (2017) 125006 [arXiv:1710.06334] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Ya. Shnir, Gravitating sphalerons in the Skyrme model, Phys. Rev. D 92 (2015) 085039 [arXiv:1508.06507] [INSPIRE].
  45. [45]
    C. Adam, T. Romanczukiewicz, M. Wachla and A. Wereszczynski, Exactly solvable gravitating perfect fluid solitons in (2 + 1) dimensions, arXiv:1802.07278 [INSPIRE].
  46. [46]
    M. Wachla, Gravitating gauged BPS baby skyrmions, arXiv:1803.10690 [INSPIRE].
  47. [47]
    Y. Brihaye, C. Herdeiro, E. Radu and D.H. Tchrakian, Skyrmions, Skyrme stars and black holes with Skyrme hair in five spacetime dimension, JHEP 11 (2017) 037 [arXiv:1710.03833] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    F.R. Klinkhamer and J.M. Queiruga, Antigravity from a spacetime defect, arXiv:1803.09736 [INSPIRE].
  49. [49]
    C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, BPS skyrmions as neutron stars, Phys. Lett. B 742 (2015) 136 [arXiv:1407.3799] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, Neutron stars in the Bogomol’nyi-Prasad-Sommerfield Skyrme model: mean-field limit versus full field theory, Phys. Rev. C 92 (2015) 025802 [arXiv:1503.03095] [INSPIRE].ADSGoogle Scholar
  51. [51]
    G. Dvali and A. Gußmann, Skyrmion black hole hair: conservation of baryon number by black holes and observable manifestations, Nucl. Phys. B 913 (2016) 1001 [arXiv:1605.00543] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Dvali and A. Gußmann, Aharonov-Bohm protection of black hole’s baryon/skyrmion hair, Phys. Lett. B 768 (2017) 274 [arXiv:1611.09370] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C. Adam, C. Naya, J. Sanchez-Guillen, J.M. Speight and A. Wereszczynski, Thermodynamics of the BPS Skyrme model, Phys. Rev. D 90 (2014) 045003 [arXiv:1405.2927] [INSPIRE].ADSGoogle Scholar
  54. [54]
    C. Adam, T. Klähn, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, Baryon chemical potential and in-medium properties of BPS skyrmions, Phys. Rev. D 91 (2015) 125037 [arXiv:1504.05185] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S.B. Gudnason and M. Nitta, Domain wall skyrmions, Phys. Rev. D 89 (2014) 085022 [arXiv:1403.1245] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S.B. Gudnason and M. Nitta, Baryonic torii: toroidal baryons in a generalized Skyrme model, Phys. Rev. D 91 (2015) 045027 [arXiv:1410.8407] [INSPIRE].ADSGoogle Scholar
  57. [57]
    S.B. Gudnason and M. Nitta, Skyrmions confined as beads on a vortex ring, Phys. Rev. D 94 (2016) 025008 [arXiv:1606.00336] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Department of Physics, and Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan

Personalised recommendations