Fermion masses and mixings and dark matter constraints in a model with radiative seesaw mechanism

  • Nicolás Bernal
  • A. E. Cárcamo Hernández
  • Ivo de Medeiros Varzielas
  • Sergey Kovalenko
Open Access
Regular Article - Theoretical Physics


We formulate a predictive model of fermion masses and mixings based on a Δ(27) family symmetry. In the quark sector the model leads to the viable mixing inspired texture where the Cabibbo angle comes from the down quark sector and the other angles come from both up and down quark sectors. In the lepton sector the model generates a predictive structure for charged leptons and, after radiative seesaw, an effective neutrino mass matrix with only one real and one complex parameter. We carry out a detailed analysis of the predictions in the lepton sector, where the model is only viable for inverted neutrino mass hierarchy, predicting a strict correlation between θ23 and θ13. We show a benchmark point that leads to the best-fit values of θ12, θ13, predicting a specific sin2 θ23 ≃ 0.51 (within the 3σ range), a leptonic CP-violating Dirac phase δ ≃ 281.6° and for neutrinoless double-beta decay mee ≃ 41.3 meV. We turn then to an analysis of the dark matter candidates in the model, which are stabilized by an unbroken ℤ2 symmetry. We discuss the possibility of scalar dark matter, which can generate the observed abundance through the Higgs portal by the standard WIMP mechanism. An interesting possibility arises if the lightest heavy Majorana neutrino is the lightest ℤ2-odd particle. The model can produce a viable fermionic dark matter candidate, but only as a feebly interacting massive particle (FIMP), with the smallness of the coupling to the visible sector protected by a symmetry and directly related to the smallness of the light neutrino masses.


Beyond Standard Model Discrete Symmetries Neutrino Physics Quark Masses and SM Parameters 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.F. King, Unified Models of Neutrinos, Flavour and CP-violation, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].
  7. [7]
    E. Ma, Neutrino Mass Matrix from Δ(27) Symmetry, Mod. Phys. Lett. A 21 (2006) 1917 [hep-ph/0607056] [INSPIRE].
  8. [8]
    E. Ma, Near tribimaximal neutrino mixing with Δ(27) symmetry, Phys. Lett. B 660 (2008) 505 [arXiv:0709.0507] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    I. de Medeiros Varzielas, D. Emmanuel-Costa and P. Leser, Geometrical CP-violation from Non-Renormalisable Scalar Potentials, Phys. Lett. B 716 (2012) 193 [arXiv:1204.3633] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Bhattacharyya, I. de Medeiros Varzielas and P. Leser, A common origin of fermion mixing and geometrical CP-violation and its test through Higgs physics at the LHC, Phys. Rev. Lett. 109 (2012) 241603 [arXiv:1210.0545] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E. Ma, Neutrino Mixing and Geometric CP-violation with Δ(27) Symmetry, Phys. Lett. B 723 (2013) 161 [arXiv:1304.1603] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    C.C. Nishi, Generalized CP symmetries in Δ(27) flavor models, Phys. Rev. D 88 (2013) 033010 [arXiv:1306.0877] [INSPIRE].ADSGoogle Scholar
  13. [13]
    I. de Medeiros Varzielas and D. Pidt, Towards realistic models of quark masses with geometrical CP-violation, J. Phys. G 41 (2014) 025004 [arXiv:1307.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Aranda, C. Bonilla, S. Morisi, E. Peinado and J.W.F. Valle, Dirac neutrinos from flavor symmetry, Phys. Rev. D 89 (2014) 033001 [arXiv:1307.3553] [INSPIRE].ADSGoogle Scholar
  15. [15]
    I. de Medeiros Varzielas and D. Pidt, Geometrical CP-violation with a complete fermion sector, JHEP 11 (2013) 206 [arXiv:1307.6545] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. Ma and A. Natale, Scotogenic Z 2 or U(1)D Model of Neutrino Mass with Δ(27) Symmetry, Phys. Lett. B 734 (2014) 403 [arXiv:1403.6772] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Abbas and S. Khalil, Fermion masses and mixing in Δ(27) flavour model, Phys. Rev. D 91 (2015) 053003 [arXiv:1406.6716] [INSPIRE].ADSGoogle Scholar
  18. [18]
    I. de Medeiros Varzielas, Δ(27) family symmetry and neutrino mixing, JHEP 08 (2015) 157 [arXiv:1507.00338] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    M. Abbas, S. Khalil, A. Rashed and A. Sil, Neutrino masses and deviation from tribimaximal mixing in Δ(27) model with inverse seesaw mechanism, Phys. Rev. D 93 (2016) 013018 [arXiv:1508.03727] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Chen, G.-J. Ding, A.D. Rojas, C.A. Vaquera-Araujo and J.W.F. Valle, Warped flavor symmetry predictions for neutrino physics, JHEP 01 (2016) 007 [arXiv:1509.06683] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].ADSGoogle Scholar
  22. [22]
    V.V. Vien, A.E. Cárcamo Hernández and H.N. Long, The Δ(27) flavor 3-3-1 model with neutral leptons, Nucl. Phys. B 913 (2016) 792 [arXiv:1601.03300] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.E. Cárcamo Hernández, H.N. Long and V.V. Vien, A 3-3-1 model with right-handed neutrinos based on the Δ(27) family symmetry, Eur. Phys. J. C 76 (2016) 242 [arXiv:1601.05062] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.E. Cárcamo Hernández, S. Kovalenko, J.W.F. Valle and C.A. Vaquera-Araujo, Predictive Pati-Salam theory of fermion masses and mixing, JHEP 07 (2017) 118 [arXiv:1705.06320] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    I. de Medeiros Varzielas, G.G. Ross and J. Talbert, A Unified Model of Quarks and Leptons with a Universal Texture Zero, JHEP 03 (2018) 007 [arXiv:1710.01741] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    A.E. Cárcamo Hernández, H.N. Long and V.V. Vien, Fermion masses and mixings in a 3-3-1 model with Δ(27) family symmetry and inverse seesaw mechanism, arXiv:1803.01636 [INSPIRE].
  27. [27]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  28. [28]
    L. Bergström, Nonbaryonic dark matter: Observational evidence and detection methods, Rept. Prog. Phys. 63 (2000) 793 [hep-ph/0002126] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Bertone and D. Hooper, A History of Dark Matter, arXiv:1605.04909 [INSPIRE].
  30. [30]
    J. de Swart, G. Bertone and J. van Dongen, How Dark Matter Came to Matter, arXiv:1703.00013 [INSPIRE].
  31. [31]
    G. Arcadi et al., The waning of the WIMP? A review of models, searches and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].
  33. [33]
    K.-Y. Choi and L. Roszkowski, E-WIMPs, AIP Conf. Proc. 805 (2006) 30 [hep-ph/0511003] [INSPIRE].
  34. [34]
    A. Kusenko, Sterile neutrinos, dark matter and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [INSPIRE].
  35. [35]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [arXiv:0711.4646] [INSPIRE].ADSGoogle Scholar
  37. [37]
    N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  39. [39]
    A.E. Carcamo Hernandez, I. de Medeiros Varzielas, S.G. Kovalenko, H. Päs and I. Schmidt, Lepton masses and mixings in an A 4 multi-Higgs model with a radiative seesaw mechanism, Phys. Rev. D 88 (2013) 076014 [arXiv:1307.6499] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M.D. Campos, A.E. Cárcamo Hernández, S. Kovalenko, I. Schmidt and E. Schumacher, Fermion masses and mixings in an SU(5) grand unified model with an extra flavor symmetry, Phys. Rev. D 90 (2014) 016006 [arXiv:1403.2525] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A.E. Cárcamo Hernández, A novel and economical explanation for SM fermion masses and mixings, Eur. Phys. J. C 76 (2016) 503 [arXiv:1512.09092] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    I. de Medeiros Varzielas, O. Fischer and V. Maurer, \( {\mathbb{A}}_4 \) symmetry at colliders and in the universe, JHEP 08 (2015) 080 [arXiv:1504.03955] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    C. Arbeláez, A.E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiative Seesaw-type Mechanism of Fermion Masses and Non-trivial Quark Mixing, Eur. Phys. J. C 77 (2017) 422 [arXiv:1602.03607] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Kownacki and E. Ma, Gauge U(1) dark symmetry and radiative light fermion masses, Phys. Lett. B 760 (2016) 59 [arXiv:1604.01148] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Nomura and H. Okada, Radiatively induced Quark and Lepton Mass Model, Phys. Lett. B 761 (2016) 190 [arXiv:1606.09055] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Nomura and H. Okada, Two-loop Induced Majorana Neutrino Mass in a Radiatively Induced Quark and Lepton Mass Model, Phys. Rev. D 94 (2016) 093006 [arXiv:1609.01504] [INSPIRE].ADSGoogle Scholar
  47. [47]
    T. Nomura, H. Okada and Y. Orikasa, Radiative neutrino model with SU(2)L triplet fields, Phys. Rev. D 94 (2016) 115018 [arXiv:1610.04729] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Centelles Chuliá, E. Ma, R. Srivastava and J.W.F. Valle, Dirac Neutrinos and Dark Matter Stability from Lepton Quarticity, Phys. Lett. B 767 (2017) 209 [arXiv:1606.04543] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A.E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiatively generated hierarchy of lepton and quark masses, JHEP 02 (2017) 125 [arXiv:1611.09797] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A.E. Cárcamo Hernández and H.N. Long, A highly predictive A 4 flavour 3-3-1 model with radiative inverse seesaw mechanism, J. Phys. G 45 (2018) 045001 [arXiv:1705.05246] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.E. Cárcamo Hernández, S. Kovalenko, H.N. Long and I. Schmidt, A variant of 3-3-1 model for the generation of the SM fermion mass and mixing pattern, arXiv:1705.09169 [INSPIRE].
  52. [52]
    C. Alvarado, F. Elahi and N. Raj, Thermal dark matter via the flavon portal, Phys. Rev. D 96 (2017) 075002 [arXiv:1706.03081] [INSPIRE].ADSGoogle Scholar
  53. [53]
    L. Calibbi, A. Crivellin and B. Zaldívar, Flavor portal to dark matter, Phys. Rev. D 92 (2015) 016004 [arXiv:1501.07268] [INSPIRE].
  54. [54]
    I. de Medeiros Varzielas and O. Fischer, Non-Abelian family symmetries as portals to dark matter, JHEP 01 (2016) 160 [arXiv:1512.00869] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A.E. Cárcamo Hernández and I. de Medeiros Varzielas, Viable textures for the fermion sector, J. Phys. G 42 (2015) 065002 [arXiv:1410.2481] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    I. de Medeiros Varzielas, S.F. King, C. Luhn and T. Neder, Minima of multi-Higgs potentials with triplets of Δ(3n 2) and Δ(6n 2), Phys. Lett. B 775 (2017) 303 [arXiv:1704.06322] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    K. Bora, Updated values of running quark and lepton masses at GUT scale in SM, 2HDM and MSSM, Horizon 2 (2013) [arXiv:1206.5909] [INSPIRE].
  58. [58]
    Z.-z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].ADSGoogle Scholar
  59. [59]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  60. [60]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  61. [61]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2017, arXiv:1708.01186 [INSPIRE].
  62. [62]
    CUORE collaboration, F. Alessandria et al., Sensitivity of CUORE to Neutrinoless Double-Beta Decay, arXiv:1109.0494 [INSPIRE].
  63. [63]
    KamLAND-Zen collaboration, A. Gando et al., Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].
  64. [64]
    I. de Medeiros Varzielas and L. Merlo, Ultraviolet Completion of Flavour Models, JHEP 02 (2011) 062 [arXiv:1011.6662] [INSPIRE].CrossRefGoogle Scholar
  65. [65]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A Tool for dark matter studies, Nuovo Cim. C 033N2 (2010) 111 [arXiv:1005.4133] [INSPIRE].
  68. [68]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    PandaX-II collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  70. [70]
    M. Farina, D. Pappadopulo and A. Strumia, CDMS stands for Constrained Dark Matter Singlet, Phys. Lett. B 688 (2010) 329 [arXiv:0912.5038] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Giedt, A.W. Thomas and R.D. Young, Dark matter, the CMSSM and lattice QCD, Phys. Rev. Lett. 103 (2009) 201802 [arXiv:0907.4177] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A.M. Green, Effect of halo modeling on WIMP exclusion limits, Phys. Rev. D 66 (2002) 083003 [astro-ph/0207366] [INSPIRE].
  73. [73]
    M. Zemp et al., The Graininess of Dark Matter Haloes, Mon. Not. Roy. Astron. Soc. 394 (2009) 641 [arXiv:0812.2033] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    C. McCabe, The Astrophysical Uncertainties Of Dark Matter Direct Detection Experiments, Phys. Rev. D 82 (2010) 023530 [arXiv:1005.0579] [INSPIRE].ADSGoogle Scholar
  75. [75]
    M. Pato, O. Agertz, G. Bertone, B. Moore and R. Teyssier, Systematic uncertainties in the determination of the local dark matter density, Phys. Rev. D 82 (2010) 023531 [arXiv:1006.1322] [INSPIRE].ADSGoogle Scholar
  76. [76]
    M. Fairbairn, T. Douce and J. Swift, Quantifying Astrophysical Uncertainties on Dark Matter Direct Detection Results, Astropart. Phys. 47 (2013) 45 [arXiv:1206.2693] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    N. Bernal, J.E. Forero-Romero, R. Garani and S. Palomares-Ruiz, Systematic uncertainties from halo asphericity in dark matter searches, JCAP 09 (2014) 004 [arXiv:1405.6240] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    N. Bernal, J.E. Forero-Romero, R. Garani and S. Palomares-Ruiz, Systematic uncertainties from halo asphericity in dark matter searches, Nucl. Part. Phys. Proc. 267-269 (2015) 345 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    N. Bernal, L. Necib and T.R. Slatyer, Spherical Cows in Dark Matter Indirect Detection, JCAP 12 (2016) 030 [arXiv:1606.00433] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Benito, N. Bernal, N. Bozorgnia, F. Calore and F. Iocco, Particle Dark Matter Constraints: the Effect of Galactic Uncertainties, JCAP 02 (2017) 007 [arXiv:1612.02010] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A.M. Green, Astrophysical uncertainties on the local dark matter distribution and direct detection experiments, J. Phys. G 44 (2017) 084001 [arXiv:1703.10102] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Nicolás Bernal
    • 1
    • 2
  • A. E. Cárcamo Hernández
    • 3
  • Ivo de Medeiros Varzielas
    • 4
  • Sergey Kovalenko
    • 3
  1. 1.Centro de InvestigacionesUniversidad Antonio NariñoBogotáColombia
  2. 2.Laboratoire de Physique Théorique, CNRS, Université Paris-Sud, Université Paris-SaclayOrsayFrance
  3. 3.Universidad Técnica Federico Santa María, and Centro Cientıfico-Tecnológico de ValparaísoValparaísoChile
  4. 4.CFTP, Departamento de Física, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations