The ultraviolet behavior of quantum gravity

  • Damiano Anselmi
  • Marco Piva
Open Access
Regular Article - Theoretical Physics


A theory of quantum gravity has been recently proposed by means of a novel quantization prescription, which is able to turn the poles of the free propagators that are due to the higher derivatives into fakeons. The classical Lagrangian contains the cosmological term, the Hilbert term, \( \sqrt{-g}{R}_{\mu \nu }{R}^{\mu \nu } \) and \( \sqrt{-g}{R}^2 \). In this paper, we compute the one-loop renormalization of the theory and the absorptive part of the graviton self energy. The results illustrate the mechanism that makes renormalizability compatible with unitarity. The fakeons disentangle the real part of the self energy from the imaginary part. The former obeys a renormalizable power counting, while the latter obeys the nonrenormalizable power counting of the low energy expansion and is consistent with unitarity in the limit of vanishing cosmological constant. The value of the absorptive part is related to the central charge c of the matter fields coupled to gravity.


Models of Quantum Gravity Beyond Standard Model Renormalization Regularization and Renormalons 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D. Anselmi, On the quantum field theory of the gravitational interactions, JHEP 06 (2017) 086 [arXiv:1704.07728] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Anselmi, Fakeons And Lee-Wick Models, JHEP 02 (2018) 141 [arXiv:1801.00915] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    T.D. Lee and G.C. Wick, Negative Metric and the Unitarity of the S Matrix, Nucl. Phys. B 9 (1969) 209 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T.D. Lee and G.C. Wick, Finite Theory of Quantum Electrodynamics, Phys. Rev. D 2 (1970) 1033 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B 12 (1969) 281 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B. Grinstein, D. O’Connell and M.B. Wise, Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model, Phys. Rev. D 79 (2009) 105019 [arXiv:0805.2156] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 06 (2017) 066 [arXiv:1703.04584] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D. Anselmi and M. Piva, Perturbative unitarity of Lee-Wick quantum field theory, Phys. Rev. D 96 (2017) 045009 [arXiv:1703.05563] [INSPIRE].ADSzbMATHGoogle Scholar
  9. [9]
    S.B. Giddings, The boundary S matrix and the AdS to CFT dictionary, Phys. Rev. Lett. 83 (1999) 2707 [hep-th/9903048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about Anti-de Sitter space-times?, JHEP 03 (1999) 001 [hep-th/9902052] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.C. Ward, An Identity in Quantum Electrodynamics, Phys. Rev. 78 (1950) 182 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Takahashi, On the generalized Ward identity, Nuovo Cim. 6 (1957) 371 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A.A. Slavnov, Ward Identities in Gauge Theories, Theor. Math. Phys. 10 (1972) 99 [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    J.C. Taylor, Ward Identities and Charge Renormalization of the Yang-Mills Field, Nucl. Phys. B 33 (1971) 436 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J. Julve and M. Tonin, Quantum Gravity with Higher Derivative Terms, Nuovo Cim. B 46 (1978) 137 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys. B 201 (1982) 469 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    I.G. Avramidi and A.O. Barvinsky, Asymptotic freedom in higher derivative quantum gravity, Phys. Lett. 159B (1985) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity II: Higher derivative gravity, Eur. Phys. J. C 77 (2017) 611 [arXiv:1610.07991] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080 [arXiv:1403.4226] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Salvio and A. Strumia, Agravity up to infinite energy, Eur. Phys. J. C 78 (2018) 124 [arXiv:1705.03896] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    I.A. Batalin and G.A. Vilkovisky, Gauge Algebra and Quantization, Phys. Lett. 102B (1981) 27 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    I.A. Batalin and G.A. Vilkovisky, Quantization of Gauge Theories with Linearly Dependent Generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [INSPIRE].
  23. [23]
    S. Weinberg, The quantum theory of fields, volume 2, Cambridge University Press, Cambridge (1995).Google Scholar
  24. [24]
    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    J. Zinn-Justin, Renormalization of gauge theories, in Trends in Elementary Particle Physics, Lecture Notes in Physics, Vol. 37, H. Rollnik and K. Dietz eds., Springer-Verlag, Berlin, Germany, (1975).Google Scholar
  26. [26]
    N. Nakanishi, Indefinite metric quantum field theory, Prog. Theor. Phys. Suppl. 51 (1972) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    B. Lautrup, Canonical quantum electrodynamics in covariant gauges, Mat. Fys. Medd. Dan. Vid. Selsk. 35 (1967) 11.Google Scholar
  28. [28]
    D. Anselmi, Background field method and the cohomology of renormalization, Phys. Rev. D 93 (2016) 065034 [arXiv:1511.01244] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    D. Anselmi, Background field method, Batalin-Vilkovisky formalism and parametric completeness of renormalization, Phys. Rev. D 89 (2014) 045004 [arXiv:1311.2704] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S.J. Hathrell, Trace Anomalies and λϕ 4 Theory in Curved Space, Annals Phys. 139 (1982) 136 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    S.J. Hathrell, Trace Anomalies and QED in Curved Space, Annals Phys. 142 (1982) 34 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M.D. Freeman, The Renormalization of Nonabelian Gauge Theories in Curved Space-time, Annals Phys. 153 (1984) 339 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D. Anselmi, Ward identities and gauge independence in general chiral gauge theories, Phys. Rev. D 92 (2015) 025027 [arXiv:1501.06692] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable particles, Physica 29 (1963) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D. Anselmi, Aspects of perturbative unitarity, Phys. Rev. D 94 (2016) 025028 [arXiv:1606.06348] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Enrico Fermi”Università di PisaPisaItaly
  2. 2.INFN, Sezione di PisaPisaItaly

Personalised recommendations