Conformal field theories and compact curves in moduli spaces

  • Ron Donagi
  • David R. Morrison
Open Access
Regular Article - Theoretical Physics


We show that there are many compact subsets of the moduli space M g of Riemann surfaces of genus g that do not intersect any symmetry locus. This has interesting implications for \( \mathcal{N}=2 \) supersymmetric conformal field theories in four dimensions.


Anomalies in Field and String Theories Conformal Field Theory Differential and Algebraic Geometry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Gomis et al., Anomalies, conformal manifolds and spheres, JHEP 03 (2016) 022 [arXiv:1509.08511] [INSPIRE].
  2. [2]
    H. Jockers et al., Two-sphere partition functions and Gromov-Witten invariants, Commun. Math. Phys. 325 (2014) 1139 [arXiv:1208.6244] [INSPIRE].
  3. [3]
    R. Donagi and E. Sharpe, On the global moduli of Calabi-Yau threefolds, arXiv:1707.05322 [INSPIRE].
  4. [4]
    D.R. Morrison and M.R. Plesser, Zeroes of the two-sphere partition function, to appear.Google Scholar
  5. [5]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
  6. [6]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  7. [7]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].
  9. [9]
    J. Teschner and G.S. Vartanov, Supersymmetric gauge theories, quantization offlat and conformal field theory, Adv. Theor. Math. Phys. 19 (2015) 1 [arXiv:1302.3778] [INSPIRE].
  10. [10]
    D. Friedan and S.H. Shenker, The analytic geometry of two-dimensional conformal field theory, Nucl. Phys. B 281 (1987) 509 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    P.G. Zograf and L.A. Takhtadzhyan, On the uniformization of Riemann surfaces and on the Weil-Petersson metric on the Teichmüller and Schottky spaces, Math. USSR Sb. 60 (1988) 297 [Mat. Sb. (N.S.) 132 (1988) 304].Google Scholar
  12. [12]
    Y. Tachikawa and K. Yonekura, Anomalies involving the space of couplings and the Zamolodchikov metric, JHEP 12 (2017) 140 [arXiv:1710.03934v3] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Seiberg, Y. Tachikawa and K. Yonekura, Anomalies of duality groups and extended conformal manifolds, to appear.Google Scholar
  14. [14]
    P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. IHES 36 (1969) 75.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R. Hain, Rational points of universal curves, J. Amer. Math. Soc. 24 (2011) 709 [arXiv:1001.5008].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Mathematics, David Rittenhouse Lab.University of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Departments of Mathematics and PhysicsUniversity of California, Santa BarbaraSanta BarbaraU.S.A.

Personalised recommendations