Advertisement

Black holes and random matrices

  • Jordan S. Cotler
  • Guy Gur-Ari
  • Masanori Hanada
  • Joseph Polchinski
  • Phil Saad
  • Stephen H. Shenker
  • Douglas Stanford
  • Alexandre Streicher
  • Masaki Tezuka
Open Access
Regular Article - Theoretical Physics

Abstract

We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function |Z(β + it)|2 as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.

Keywords

1/N Expansion AdS-CFT Correspondence Field Theories in Lower Dimensions Random Systems 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    L. Dyson, J. Lindesay and L. Susskind, Is there really a de Sitter/CFT duality?, JHEP 08 (2002) 045 [hep-th/0202163] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, Phys. Rev. Lett. 115 (2015) 211601 [arXiv:1502.06692] [INSPIRE].
  5. [5]
    L. Dyson, M. Kleban and L. Susskind, Disturbing implications of a cosmological constant, JHEP 10 (2002) 011 [hep-th/0208013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  7. [7]
    A. Kitaev, A simple model of quantum holography, talks at KITP, 7 April 2015 and 27 May 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev/, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
  8. [8]
    E. Dyer and G. Gur-Ari, 2D CFT Partition Functions at Late Times, arXiv:1611.04592 [INSPIRE].
  9. [9]
    J.L.F. Barbon and E. Rabinovici, Very long time scales and black hole thermal equilibrium, JHEP 11 (2003) 047 [hep-th/0308063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3 /CF T 2, JHEP 05 (2016) 109 [arXiv:1603.08925] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.L. Fitzpatrick and J. Kaplan, On the Late-Time Behavior of Virasoro Blocks and a Classification of Semiclassical Saddles, JHEP 04 (2017) 072 [arXiv:1609.07153] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, KITP seminar, 12 February 2015, http://online.kitp.ucsb.edu/online/joint98/kitaev/.
  13. [13]
    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    A. Kitaev, Hidden Correlations in the Hawking Radiation and Thermal Noise, talk given at the Fundamental Physics Prize Symposium, 10 November 2014, https://www.youtube.com/watch?v=OQ9qN8j7EZI.
  18. [18]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  21. [21]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, arXiv:1609.07832 [INSPIRE].
  24. [24]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher Dimensional Generalizations of the SYK Model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].ADSGoogle Scholar
  26. [26]
    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-Local Holography in the SYK Model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Almheiri and B. Kang, Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes, JHEP 10 (2016) 052 [arXiv:1606.04108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  31. [31]
    W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B 94 (2016) 035135 [arXiv:1603.05246] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev Model and Thermalization on the Boundary of Many-Body Localized Fermionic Symmetry Protected Topological States, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].ADSGoogle Scholar
  34. [34]
    V. Balasubramanian, M. Berkooz, S.F. Ross and J. Simon, Black Holes, Entanglement and Random Matrices, Class. Quant. Grav. 31 (2014) 185009 [arXiv:1404.6198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP 04 (2017) 121 [arXiv:1610.04903] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.L. Mehta, Random matrices, volume 142, Academic Press (2004).Google Scholar
  37. [37]
    C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83 (2011) 075103.ADSCrossRefGoogle Scholar
  40. [40]
    F.J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3 (1962) 140 [INSPIRE].
  41. [41]
    T. Guhr, A. Müller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rept. 299 (1998) 189 [cond-mat/9707301] [INSPIRE].
  42. [42]
    E.P. Wigner, Results and theory of resonance absorption, in Proceedings of the conference on neutron physics by time-of-flight, Gatlinburg, Tennessee (1956).Google Scholar
  43. [43]
    O. Bohigas and M.-J. Giannoni, Chaotic motion and random matrix theories, in Mathematical and computational methods in nuclear physics, Springer (1984), pg. 1-99.Google Scholar
  44. [44]
    M.L. Mehta, On the statistical properties of the level-spacings in nuclear spectra, Nucl. Phys. 18 (1960) 395.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    M. Gaudin, Sur la loi limite de l’espacement des valeurs propres d’une matrice aléatoire, Nucl. Phys. 25 (1961) 447.CrossRefMATHGoogle Scholar
  46. [46]
    S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    O. Parcollet and A. Georges, Non-fermi-liquid regime of a doped mott insulator, Phys. Rev. B 59 (1999) 5341 [cond-mat/9806119].
  48. [48]
    A. Georges, O. Parcollet and S. Sachdev, Quantum fluctuations of a nearly critical heisenberg spin glass, Phys. Rev. B 63 (2001) 134406.ADSCrossRefGoogle Scholar
  49. [49]
    J. Polchinski and A. Streicher, unpublished.Google Scholar
  50. [50]
    F.J. Dyson, Statistical theory of the energy levels of complex systems. III, J. Math. Phys. 3 (1962) 166.Google Scholar
  51. [51]
    E. Brézin and S. Hikami, Spectral form factor in a random matrix theory, Phys. Rev. E 55 (1997) 4067 [cond-mat/9608116].
  52. [52]
    E. Brézin and S. Hikami, Extension of level-spacing universality, Phys. Rev. E 56 (1997) 264 [INSPIRE].ADSGoogle Scholar
  53. [53]
    B. Altshuler and B. Shklovskii, Repulsion of energy levels and conductivity of small metal samples, Sov. Phys. JETP 64 (1986) 127.Google Scholar
  54. [54]
    E. Brézin and A. Zee, Universality of the correlations between eigenvalues of large random matrices, Nucl. Phys. B 402 (1993) 613 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    A. Andreev and B. Altshuler, Spectral statistics beyond random matrix theory, Phys. Rev. Lett. 75 (1995) 902 [cond-mat/9503141].
  56. [56]
    A. Kamenev and M. Mézard, Wigner-Dyson statistics from the replica method, J. Phys. A 32 (1999) 4373 [cond-mat/9901110].
  57. [57]
    D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, arXiv:1703.04612 [INSPIRE].
  58. [58]
    L. Erdős and D. Schröder, Phase transition in the density of states of quantum spin glasses, Math. Phys. Anal. Geom. 17 (2014) 9164 [arXiv:1407.1552].MathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    A. Kitaev, private communication.Google Scholar
  63. [63]
    J. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.ADSCrossRefGoogle Scholar
  64. [64]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].
  65. [65]
    R.E. Prange, The spectral form factor is not self-averaging, Phys. Rev. Lett. 78 (1997) 2280 [chao-dyn/9606010].
  66. [66]
    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].
  67. [67]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    Ó.J. Dias, J.E. Santos and B. Way, Localised AdS5 × S5 Black Holes, Phys. Rev. Lett. 117 (2016) 151101 [arXiv:1605.04911] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145 [INSPIRE].
  70. [70]
    G.T. Horowitz, Comments on black holes in string theory, Class. Quant. Grav. 17 (2000) 1107 [hep-th/9910082] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    G. Rodgers and A. Bray, Density of states of a sparse random matrix, Phys. Rev. B 37 (1988) 3557.ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    J.P. Keating, N. Linden and H.J. Wells, Random matrices and quantum spin chains, Markov Process. Relat. 21 (2014) 537 [arXiv:1403.1114].MathSciNetGoogle Scholar
  74. [74]
    L. Erdős and H.-T. Yau, Universality of local spectral statistics of random matrices, Bull. Am. Math. Soc. 49 (2012) 377 [arXiv:1106.4986].MathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    F.D.M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnetic identification with the O(3) nonlinear σ-model, Phys. Lett. A 93 (1983) 464 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M.E. Ismail, D. Stanton and G. Viennot, The combinatorics of q-hermite polynomials and the askey wilson integral, Eur. J. Combinator. 8 (1987) 379.MathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    J.M. Magan, Random free fermions: An analytical example of eigenstate thermalization, Phys. Rev. Lett. 116 (2016) 030401 [arXiv:1508.05339] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  78. [78]
    D. Anninos, T. Anous and F. Denef, Disordered Quivers and Cold Horizons, JHEP 12 (2016) 071 [arXiv:1603.00453] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    C. Itzykson and J.B. Zuber, The Planar Approximation. 2, J. Math. Phys. 21 (1980) 411 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Jordan S. Cotler
    • 1
  • Guy Gur-Ari
    • 1
  • Masanori Hanada
    • 1
    • 2
    • 3
  • Joseph Polchinski
    • 4
    • 5
  • Phil Saad
    • 1
  • Stephen H. Shenker
    • 1
  • Douglas Stanford
    • 6
  • Alexandre Streicher
    • 1
    • 4
  • Masaki Tezuka
    • 7
  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  3. 3.The Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
  4. 4.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  5. 5.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  6. 6.Institute for Advanced StudyPrincetonU.S.A.
  7. 7.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations