Advertisement

Resonace-improved parton-shower matching for the Drell-Yan process including electroweak corrections

  • A. MückEmail author
  • L. Oymanns
Open Access
Regular Article - Theoretical Physics

Abstract

We use the Powheg method to perform parton-shower matching for Drell-Yan production of W and Z bosons at the LHC at NLO QCD and NLO electroweak accuracy. In particular, we investigate an improved treatment of the vector-boson resonances within the Powheg method. We employ an independent implementation of the Powheg method and compare to earlier results within the Powheg-Box. On the technical side, we provide the FKS formalism for photon-radiation off fermions within mass regularization.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.L. Mangano, Production of electroweak bosons at hadron colliders: theoretical aspects, Adv. Ser. Direct. High Energy Phys. 26 (2016) 231 [arXiv:1512.00220] [INSPIRE].CrossRefzbMATHGoogle Scholar
  2. [2]
    M. Baak et al., Working group report: precision study of electroweak interactions, in the proceedings of the Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), July 29-August 6, Minneapolis, U.S.A. (2013), arXiv:1310.6708 [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of the W -boson mass in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1701.07240 [INSPIRE].
  4. [4]
    G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α s2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].
  6. [6]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].
  7. [7]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
  8. [8]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(α s2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
  10. [10]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W physics at the LHC with FEWZ 2.1, Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE].MathSciNetGoogle Scholar
  12. [12]
    R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Dittmaier and M. Krämer, 1, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].
  14. [14]
    U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65 (2002) 033007 [hep-ph/0108274] [INSPIRE].
  15. [15]
    U. Baur and D. Wackeroth, Electroweak radiative corrections to \( p\overline{p}\to {W}^{\pm}\to {\ell}^{\pm}\nu \) beyond the pole approximation, Phys. Rev. D 70 (2004) 073015 [hep-ph/0405191] [INSPIRE].
  16. [16]
    S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the charged current Drell-Yan process, JHEP 12 (2006) 016 [hep-ph/0609170] [INSPIRE].
  18. [18]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, JHEP 10 (2007) 109 [arXiv:0710.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. I. The charged current case, Eur. Phys. J. C 46 (2006) 407 [Erratum ibid. C 50 (2007) 505] [hep-ph/0506110] [INSPIRE].
  20. [20]
    A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. II: the neutral current case, Eur. Phys. J. C 54 (2008) 451 [arXiv:0711.0625] [INSPIRE].
  21. [21]
    W. Placzek, S. Jadach and M.W. Krasny, Drell-Yan processes with WINHAC, Acta Phys. Polon. B 44 (2013) 2171 [arXiv:1310.5994] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ, Phys. Rev. D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G. Balossini et al., Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC, JHEP 01 (2010) 013 [arXiv:0907.0276] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Alioli et al., Precision Studies of Observables in ppWℓν and ppγ, Z + Processes at the LHC, Eur. Phys. J. C 77 (2017) 280 [arXiv:1606.02330] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    S. Dittmaier, A. Huss and C. Schwinn, Mixed QCD-electroweak O(α s α) corrections to Drell-Yan processes in the resonance region: pole approximation and non-factorizable corrections, Nucl. Phys. B 885 (2014) 318 [arXiv:1403.3216] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Dittmaier, A. Huss and C. Schwinn, Dominant mixed QCD-electroweak O(α s α) corrections to Drell-Yan processes in the resonance region, Nucl. Phys. B 904 (2016) 216 [arXiv:1511.08016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, One-loop weak corrections to hadronic production of Z bosons at large transverse momenta, Nucl. Phys. B 727 (2005) 368 [hep-ph/0507178] [INSPIRE].
  28. [28]
    J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to hadronic production of W bosons at large transverse momenta, Nucl. Phys. B 797 (2008) 27 [arXiv:0708.0476] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to dilepton + jet production at hadron colliders, JHEP 06 (2011) 069 [arXiv:1103.0914] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to monojet production at the LHC, Eur. Phys. J. C 73 (2013) 2297 [arXiv:1211.5078] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117 (2016) 022001 [arXiv:1507.02850] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Boughezal et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Catani, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at hadron colliders: transverse-momentum resummation and leptonic decay, JHEP 12 (2015) 047 [arXiv:1507.06937] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  36. [36]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Höche, Y. Li and S. Prestel, Drell-Yan lepton pair production at NNLO QCD with parton showers, Phys. Rev. D 91 (2015) 074015 [arXiv:1405.3607] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Karlberg, E. Re and G. Zanderighi, NNLOPS accurate Drell-Yan production, JHEP 09 (2014) 134 [arXiv:1407.2940] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at NNLL’+NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].ADSGoogle Scholar
  42. [42]
    L. Barze, G. Montagna, P. Nason, O. Nicrosini, F. Piccinini and A. Vicini, Neutral current Drell-Yan with combined QCD and electroweak corrections in the POWHEG BOX, Eur. Phys. J. C 73 (2013) 2474 [arXiv:1302.4606] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C. Bernaciak and D. Wackeroth, Combining NLO QCD and electroweak radiative corrections to W boson production at hadron colliders in the POWHEG framework, Phys. Rev. D 85 (2012) 093003 [arXiv:1201.4804] [INSPIRE].ADSGoogle Scholar
  44. [44]
    L. Barze, G. Montagna, P. Nason, O. Nicrosini and F. Piccinini, Implementation of electroweak corrections in the POWHEG BOX: single W production, JHEP 04 (2012) 037 [arXiv:1202.0465] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    T. Jezo and P. Nason, On the treatment of resonances in next-to-leading order calculations matched to a parton shower, JHEP 12 (2015) 065 [arXiv:1509.09071] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C.M. Carloni Calame et al., Precision measurement of the W -boson mass: theoretical contributions and uncertainties, arXiv:1612.02841 [INSPIRE].
  47. [47]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
  48. [48]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  49. [49]
    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].
  50. [50]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
  52. [52]
    L. Basso, S. Dittmaier, A. Huss and L. Oggero, Techniques for the treatment of IR divergences in decay processes at NLO and application to the top-quark decay, Eur. Phys. J. C 76 (2016) 56 [arXiv:1507.04676] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Brensing, S. Dittmaier, M. Krämer, 1 and A. Mück, Radiative corrections to W boson hadroproduction: Higher-order electroweak and supersymmetric effects, Phys. Rev. D 77 (2008) 073006 [arXiv:0710.3309] [INSPIRE].
  54. [54]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].
  56. [56]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  57. [57]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  58. [58]
    A. Buckley, J. Butterworth, L. Lönnblad, D. Grellscheid, H. Hoeth, J. Monk et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  60. [60]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  61. [61]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  62. [62]
    NNPDF collaboration, S. Carrazza, Towards the determination of the photon parton distribution function constrained by LHC data, PoS(DIS 2013)279 [arXiv:1307.1131] [INSPIRE].
  63. [63]
    NNPDF collaboration, S. Carrazza, Towards an unbiased determination of parton distributions with QED corrections, in the proceedings of the 48th Rencontres de Moriond on QCD and High Energy Interactions, March 9-16, La Thuile, Italy (2013), arXiv:1305.4179 [INSPIRE].
  64. [64]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K.P.O. Diener, S. Dittmaier and W. Hollik, Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering, Phys. Rev. D 72 (2005) 093002 [hep-ph/0509084] [INSPIRE].
  66. [66]
    N. Davidson, T. Przedzinski and Z. Was, PHOTOS interface in C++: technical and physics documentation, Comput. Phys. Commun. 199 (2016) 86 [arXiv:1011.0937] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    T. Ježo, J.M. Lindert, P. Nason, C. Oleari and S. Pozzorini, An NLO+PS generator for \( t\overline{t} \) and W t production and decay including non-resonant and interference effects, Eur. Phys. J. C 76 (2016) 691 [arXiv:1607.04538] [INSPIRE].ADSGoogle Scholar
  68. [68]
  69. [69]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany

Personalised recommendations