Quantum geometry of resurgent perturbative/nonperturbative relations

Open Access
Regular Article - Theoretical Physics


For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain \( \mathcal{N} \) = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.


Nonperturbative Effects Solitons Monopoles and Instantons Topological Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R.B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press (1973).Google Scholar
  2. [2]
    J. Écalle, Les fonctions resurgentes, vol. I-III, Publications Mathématiques d’Orsay (1981).Google Scholar
  3. [3]
    E. Delabaere, Introduction to the Ecalle theory, in Computer algebra and differential equations, Lecture Note Series, vol. 193, Cambridge University Press, Cambridge U.K. (1994), pg. 59.Google Scholar
  4. [4]
    O. Costin, Asymptotics and Borel summability, Chapman & Hall/CRC (2009).Google Scholar
  5. [5]
    C. Mitschi and D. Sauzin, Divergent series, summability and resurgence I, Lect. Notes Math. 2153 (2016) 1.MathSciNetMATHGoogle Scholar
  6. [6]
    E. Delabaere, H. Dillinger and F. Pham, Exact semiclassical expansions for one-dimensional quantum oscillators, J. Math. Phys. 38 (1997) 6126.ADSMathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    E. Delabaere and F. Pham, Resurgent methods in semi-classical asymptotics, Ann. I. H. Poincare A 71 (1999) 1.MathSciNetMATHGoogle Scholar
  8. [8]
    T. Kawai and Y. Takei, Algebraic analysis of singular perturbation theory, Translations of Mathematical Monographs, vol. 227, American Mathematical Society, Providence U.S.A. (2005).Google Scholar
  9. [9]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results I: conjectures, WKB expansions and instanton interactions, Annals Phys. 313 (2004) 197 [quant-ph/0501136] [INSPIRE].
  10. [10]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results II: specific cases, higher-order effects and numerical calculations, Annals Phys. 313 (2004) 269 [quant-ph/0501137] [INSPIRE].
  11. [11]
    U.D. Jentschura, A. Surzhykov and J. Zinn-Justin, Multi-instantons and exact results III: unification of even and odd anharmonic oscillators, Annals Phys. 325 (2010) 1135 [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    U.D. Jentschura and J. Zinn-Justin, Instantons in quantum mechanics and resurgent expansions, Phys. Lett. B 596 (2004) 138 [hep-ph/0405279] [INSPIRE].
  13. [13]
    M.V. Berry and C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. A 434 (1991) 657.ADSMathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    E. Delabaere and C.J. Howls, Global asymptotics for multiple integrals with boundaries, Duke Math. J. 112 (2002) 199.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    I. Aniceto and R. Schiappa, Nonperturbative ambiguities and the reality of resurgent transseries, Commun. Math. Phys. 335 (2015) 183 [arXiv:1308.1115] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    N. Hoe et al., Stark effect of hydrogenic ions, Phys. Rev. A 25 (1982) 891.ADSCrossRefGoogle Scholar
  17. [17]
    G. Álvarez and C. Casares, Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator, J. Phys. A 33 (2000) 5171.ADSMathSciNetMATHGoogle Scholar
  18. [18]
    G. Álvarez and C. Casares, Uniform asymptotic and JWKB expansions for anharmonic oscillators, J. Phys. A 33 (2000) 2499.ADSMathSciNetMATHGoogle Scholar
  19. [19]
    G. Álvarez, C.J. Howls and H.J. Silverstone, Anharmonic oscillator discontinuity formulae up to second-exponentially-small order, J. Phys. A 35 (2002) 4003.ADSMathSciNetMATHGoogle Scholar
  20. [20]
    G. Álvarez, Langer-Cherry derivation of the multi-instanton expansion for the symmetric double well, J. Math. Phys. 45 (2004) 3095.ADSMathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    G.V. Dunne and M. Ünsal, Generating nonperturbative physics from perturbation theory, Phys. Rev. D 89 (2014) 041701 [arXiv:1306.4405] [INSPIRE].ADSGoogle Scholar
  22. [22]
    G.V. Dunne and M. Ünsal, Uniform WKB, multi-instantons and resurgent trans-series, Phys. Rev. D 89 (2014) 105009 [arXiv:1401.5202] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G.V. Dunne and M. Ünsal, WKB and resurgence in the Mathieu equation, in Lectures at Scuola Normale Superiore, Pisa Italy (2015) [arXiv:1603.04924] [INSPIRE].
  24. [24]
    T. Misumi, M. Nitta and N. Sakai, Resurgence in sine-Gordon quantum mechanics: exact agreement between multi-instantons and uniform WKB, JHEP 09 (2015) 157 [arXiv:1507.00408] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    G.V. Dunne and M. Ünsal, Deconstructing zero: resurgence, supersymmetry and complex saddles, JHEP 12 (2016) 002 [arXiv:1609.05770] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    C. Kozçaz, T. Sulejmanpasic, Y. Tanizaki and M. Ünsal, Cheshire cat resurgence, self-resurgence and quasi-exact solvable systems, arXiv:1609.06198 [INSPIRE].
  27. [27]
    S. Codesido and M. Mariño, Holomorphic anomaly and quantum mechanics, arXiv:1612.07687 [INSPIRE].
  28. [28]
    Y. Hatsuda, H. Katsura and Y. Tachikawa, Hofstadter’s butterfly in quantum geometry, New J. Phys. 18 (2016) 103023 [arXiv:1606.01894] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    Y. Hatsuda, Y. Sugimoto and Z. Xu, Calabi-Yau geometry and electrons on 2d lattices, Phys. Rev. D 95 (2017) 086004 [arXiv:1701.01561] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.A. Escobar-Ruiz, E. Shuryak and A.V. Turbiner, Three-loop correction to the instanton density. I. The quartic double well potential, Phys. Rev. D 92 (2015) 025046 [Erratum ibid. D 92 (2015) 089902] [arXiv:1501.03993] [INSPIRE].
  31. [31]
    M.A. Escobar-Ruiz, E. Shuryak and A.V. Turbiner, Three-loop correction to the instanton density. II. The sine-Gordon potential, Phys. Rev. D 92 (2015) 025047 [arXiv:1505.05115] [INSPIRE].
  32. [32]
    D.J. Broadhurst, R. Delbourgo and D. Kreimer, Unknotting the polarized vacuum of quenched QED, Phys. Lett. B 366 (1996) 421 [hep-ph/9509296] [INSPIRE].
  33. [33]
    D.J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B 393 (1997) 403 [hep-th/9609128] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    R. Balian and C. Bloch, Solution of the Schrödinger equation in terms of classical paths, Annals Phys. 85 (1974) 514 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  35. [35]
    R. Balian, G. Parisi and A. Voros, Quartic oscillator, in Feynman path integrals, S. Alberverio et al. eds., Lect. Notes Phys. 106 (1979) 337, SACLAY-DPH-T-78-95, C78-05-22.1-3 [INSPIRE].
  36. [36]
    A. Voros, The return of the quartic oscillator. The complex WKB method, Ann. I. H. Poincare A 39 (1983) 211.Google Scholar
  37. [37]
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A. Klemm, W. Lerche and S. Theisen, Nonperturbative effective actions of N = 2 supersymmetric gauge theories, Int. J. Mod. Phys. A 11 (1996) 1929 [hep-th/9505150] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    J. Sonnenschein, S. Theisen and S. Yankielowicz, On the relation between the holomorphic prepotential and the quantum moduli in SUSY gauge theories, Phys. Lett. B 367 (1996) 145 [hep-th/9510129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A. Klemm, On the geometry behind N = 2 supersymmetric effective actions in four-dimensions, Nucl. Phys. Proc. Suppl. 61A (1998) [hep-th/9705131] [INSPIRE].
  42. [42]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, in Proceedings of the 16th International Congress on Mathematical Physics (ICMP09), Prague Czech Republic, 3-8 Aug 2009, P. Exner ed., World Scientific (2010) [arXiv:0908.4052] [INSPIRE].
  45. [45]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  47. [47]
    V.A. Fateev and A.V. Litvinov, On AGT conjecture, JHEP 02 (2010) 014 [arXiv:0912.0504] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    J. Teschner, New dualities of supersymmetric gauge theories, Springer (2016) [INSPIRE].
  49. [49]
    A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Sommerfeld integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    A. Mironov and A. Morozov, Nekrasov functions from exact BS periods: the case of SU(N ), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [INSPIRE].ADSMATHGoogle Scholar
  51. [51]
    A. Mironov, A. Morozov and S. Shakirov, Matrix model conjecture for exact BS periods and Nekrasov functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    W. He and Y.-G. Miao, Magnetic expansion of Nekrasov theory: the SU(2) pure gauge theory, Phys. Rev. D 82 (2010) 025020 [arXiv:1006.1214] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M.-x. Huang, A.-K. Kashani-Poor and A. Klemm, The Ω deformed B-model for rigid \( \mathcal{N} \) = 2 theories, Ann. Henri Poincare 14 (2013) 425 [arXiv:1109.5728] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  54. [54]
    M.-x. Huang, On gauge theory and topological string in Nekrasov-Shatashvili limit, JHEP 06 (2012) 152 [arXiv:1205.3652] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    A.-K. Kashani-Poor and J. Troost, The toroidal block and the genus expansion, JHEP 03 (2013) 133 [arXiv:1212.0722] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  56. [56]
    A.-K. Kashani-Poor and J. Troost, Pure \( \mathcal{N} \) = 2 super Yang-Mills and exact WKB, JHEP 08 (2015) 160 [arXiv:1504.08324] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  57. [57]
    D. Krefl, Non-perturbative quantum geometry, JHEP 02 (2014) 084 [arXiv:1311.0584] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  58. [58]
    D. Krefl, Non-perturbative quantum geometry II, JHEP 12 (2014) 118 [arXiv:1410.7116] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  59. [59]
    D. Krefl, Non-perturbative quantum geometry III, JHEP 08 (2016) 020 [arXiv:1605.00182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    A. Gorsky and A. Milekhin, RG-Whitham dynamics and complex Hamiltonian systems, Nucl. Phys. B 895 (2015) 33 [arXiv:1408.0425] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  61. [61]
    M. Piatek and A.R. Pietrykowski, Classical irregular block, \( \mathcal{N} \) = 2 pure gauge theory and Mathieu equation, JHEP 12 (2014) 032 [arXiv:1407.0305] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Piatek and A.R. Pietrykowski, Classical limit of irregular blocks and Mathieu functions, JHEP 01 (2016) 115 [arXiv:1509.08164] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    G. Basar and G.V. Dunne, Resurgence and the Nekrasov-Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems, JHEP 02 (2015) 160 [arXiv:1501.05671] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A.-K. Kashani-Poor and J. Troost, Pure \( \mathcal{N} \) = 2 super Yang-Mills and exact WKB, JHEP 08 (2015) 160 [arXiv:1504.08324] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  65. [65]
    S.K. Ashok, D.P. Jatkar, R.R. John, M. Raman and J. Troost, Exact WKB analysis of \( \mathcal{N} \) =2 gauge theories, JHEP 07 (2016) 115 [arXiv:1604.05520] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  67. [67]
    P. Dorey and R. Tateo, On the relation between Stokes multipliers and the T-Q systems of conformal field theory, Nucl. Phys. B 563 (1999) 573 [Erratum ibid. B 603 (2001) 581] [hep-th/9906219] [INSPIRE].
  68. [68]
    P. Dorey, C. Dunning and R. Tateo, The ODE/IM correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  69. [69]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Spectral determinants for Schrödinger equation and Q-operators of conformal field theory, J. Stat. Phys. 102 (2001) 567 [hep-th/9812247] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  70. [70]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Higher-level eigenvalues of Q-operators and Schrödinger equation, Adv. Theor. Math. Phys. 7 (2003) 711 [hep-th/0307108] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  71. [71]
    R. Dijkgraaf and C. Vafa, Matrix models, topological strings and supersymmetric gauge theories, Nucl. Phys. B 644 (2002) 3 [hep-th/0206255] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  72. [72]
    R. Dijkgraaf and C. Vafa, On geometry and matrix models, Nucl. Phys. B 644 (2002) 21 [hep-th/0207106] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  73. [73]
    R. Dijkgraaf and C. Vafa, A perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].
  74. [74]
    M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  75. [75]
    M. Aganagic, M.C.N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum geometry of refined topological strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    M. Mariño, R. Schiappa and M. Weiss, Nonperturbative effects and the large-order behavior of matrix models and topological strings, Commun. Num. Theor. Phys. 2 (2008) 349 [arXiv:0711.1954] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  77. [77]
    M. Mariño, R. Schiappa and M. Weiss, Multi-instantons and multicuts, J. Math. Phys. 50 (2009) 052301 [arXiv:0809.2619] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  78. [78]
    S. Pasquetti and R. Schiappa, Borel and Stokes nonperturbative phenomena in topological string theory and c = 1 matrix models, Ann. Henri Poincare 11 (2010) 351 [arXiv:0907.4082] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  79. [79]
    I. Aniceto, R. Schiappa and M. Vonk, The resurgence of instantons in string theory, Commun. Num. Theor. Phys. 6 (2012) 339 [arXiv:1106.5922] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  80. [80]
    M. Mariño, Lectures on non-perturbative effects in large N gauge theories, matrix models and strings, Fortschr. Phys. 62 (2014) 455 [arXiv:1206.6272] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  81. [81]
    R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local ℂ2, Commun. Math. Phys. 338 (2015) 285 [arXiv:1407.4821] [INSPIRE].
  82. [82]
    I. Aniceto, J.G. Russo and R. Schiappa, Resurgent analysis of localizable observables in supersymmetric gauge theories, JHEP 03 (2015) 172 [arXiv:1410.5834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    R. Couso-Santamaría, R. Schiappa and R. Vaz, Finite N from resurgent large N , Annals Phys. 356 (2015) 1 [arXiv:1501.01007] [INSPIRE].
  84. [84]
    M. Mariño, Instantons and large N : an introduction to non-perturbative methods in quantum field theory, Cambridge University Press, Cambridge U.K. (2015).MATHCrossRefGoogle Scholar
  85. [85]
    A. Grassi, Spectral determinants and quantum theta functions, J. Phys. A 49 (2016) 505401 [arXiv:1604.06786] [INSPIRE].MathSciNetMATHGoogle Scholar
  86. [86]
    R. Couso-Santamaría, M. Mariño and R. Schiappa, Resurgence matches quantization, J. Phys. A 50 (2017) 145402 [arXiv:1610.06782] [INSPIRE].
  87. [87]
    M. Matone, Instantons and recursion relations in N = 2 SUSY gauge theory, Phys. Lett. B 357 (1995) 342 [hep-th/9506102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    A. Klemm, M. Mariño and S. Theisen, Gravitational corrections in supersymmetric gauge theory and matrix models, JHEP 03 (2003) 051 [hep-th/0211216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    R. Flume, F. Fucito, J.F. Morales and R. Poghossian, Matone’s relation in the presence of gravitational couplings, JHEP 04 (2004) 008 [hep-th/0403057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  90. [90]
    F. Fucito, J.F. Morales, R. Poghossian and A. Tanzini, \( \mathcal{N} \) = 1 superpotentials from multi-instanton calculus, JHEP 01 (2006) 031 [hep-th/0510173] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  91. [91]
    R. Poghossian, Deforming SW curve, JHEP 04 (2011) 033 [arXiv:1006.4822] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  92. [92]
    K. Maruyoshi and M. Taki, Deformed prepotential, quantum integrable system and Liouville field theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  93. [93]
    S. Ramanujan, Modular equations and approximations to π, Quart. J. Math. XLV (1914) 350.Google Scholar
  94. [94]
    B.C. Berndt, S. Bhargava and F.G. Garvan, Ramanujan’s theories of elliptic functions to alternative bases, T. Am. Math. Soc. 347 (1995) 4163.MathSciNetMATHGoogle Scholar
  95. [95]
    R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, Leipzig Germany (1916).MATHGoogle Scholar
  96. [96]
    L.-C. Shen, On Hecke groups, Schwarzian triangle functions and a class of hyper-elliptic functions, Ramanujan J. 39 (2016) 609.MathSciNetMATHCrossRefGoogle Scholar
  97. [97]
    J.M. Borwein and P.B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, T. Am. Math. Soc. 323 (1991) 691.MathSciNetMATHGoogle Scholar
  98. [98]
    J.M. Borwein, P.B. Borwein and F.G. Garvan, Some cubic modular identities of Ramanujan, T. Am. Math. Soc. 343 (1994) 35.MathSciNetMATHCrossRefGoogle Scholar
  99. [99]
    S. Cooper, Inversion formulas for elliptic functions, P. Lond. Math. Soc. 99 (2009) 461.MathSciNetMATHCrossRefGoogle Scholar
  100. [100]
    L.-C. Shen, On the theory of elliptic functions based on \( {}_2{F}_1\left({\scriptscriptstyle \frac{1}{3}},{\scriptscriptstyle \frac{2}{3}};{\scriptscriptstyle \frac{1}{2}};\mathrm{z}\right) \), T. Am. Math. Soc. 357 (2005) 2043.CrossRefGoogle Scholar
  101. [101]
    L.-C. Shen, A note on Ramanujan’s identities involving the hypergeometric function \( {}_2{F}_1\left({\scriptscriptstyle \frac{1}{6}},{\scriptscriptstyle \frac{5}{6}};\kern0.5em 1;\kern0.5em \mathrm{z}\right) \), Ramanujan J. 30 (2013) 211.MathSciNetCrossRefGoogle Scholar
  102. [102]
    L.-C. Shen, On a theory of elliptic functions based on the incomplete integral of the hypergeometric function \( {}_2{F}_1\left({\scriptscriptstyle \frac{1}{4}},{\scriptscriptstyle \frac{3}{4}};{\scriptscriptstyle \frac{1}{2}};\mathrm{z}\right) \), Ramanujan J. 34 (2014) 209.MathSciNetCrossRefGoogle Scholar
  103. [103]
    D. Zagier, Traces of singular moduli, in Motives, polylogarithms and Hodge theory, Lecture Series vol. 3, F. Bogomolov and L. Katzarkov eds., International Press, Somerville U.S.A. (2002), pp. 209-244.Google Scholar
  104. [104]
    E.P. Verlinde and N.P. Warner, Topological Landau-Ginzburg matter at c = 3, Phys. Lett. B 269 (1991) 96 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  105. [105]
    A. Klemm, S. Theisen and M.G. Schmidt, Correlation functions for topological Landau-Ginzburg models with c ≤ 3, Int. J. Mod. Phys. A 7 (1992) 6215 [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  106. [106]
    S.K. Ashok, E. Dell’Aquila, A. Lerda and M. Raman, S-duality, triangle groups and modular anomalies in \( \mathcal{N} \) = 2 SQCD, JHEP 04 (2016) 118 [arXiv:1601.01827] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  107. [107]
    Z. Nehari, Conformal mapping, Dover Publications (2009).Google Scholar
  108. [108]
    A. Klemm, B.H. Lian, S.S. Roan and S.-T. Yau, A note on ODEs from mirror symmetry, hep-th/9407192 [INSPIRE].
  109. [109]
    B.H. Lian and S.-T. Yau, Arithmetic properties of mirror map and quantum coupling, Commun. Math. Phys. 176 (1996) 163 [hep-th/9411234] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  110. [110]
    B.H. Lian and S.-T. Yau, Mirror maps, modular relations and hypergeometric series I, hep-th/9507151 [INSPIRE].
  111. [111]
    B.H. Lian and S.-T. Yau, Mirror maps, modular relations and hypergeometric series II, Nucl. Phys. Proc. Suppl. 46 (1996) 248 [hep-th/9507153] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  112. [112]
    B.H. Lian and S.-T. Yau, Differential equations from mirror symmetry, in Differential geometry inspired by string theory, S.-T. Yau ed., International Press, Boston U.S.A. (1999), pp. 510-526.Google Scholar
  113. [113]
    A. Brandhuber and S. Stieberger, Periods, coupling constants and modular functions in N = 2 SU(2) SYM with massive matter, Int. J. Mod. Phys. A 13 (1998) 1329 [hep-th/9609130] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  114. [114]
    V.I. Arnold, Local normal forms of functions, Invent. Math. 35 (1976) 87.ADSMathSciNetMATHCrossRefGoogle Scholar
  115. [115]
    H. Bateman, Higher transcendental functions, vol. I-III, McGraw-Hill, New York U.S.A. (1953).Google Scholar
  116. [116]
    P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, Springer-Verlag, Berlin Germany (1971).MATHCrossRefGoogle Scholar
  117. [117]
    G. Álvarez and H.J. Silverstone, Large-field behavior of the LoSurdo-Stark resonances in atomic hydrogen, Phys. Rev. A 50 (1994) 4679.ADSCrossRefGoogle Scholar
  118. [118]
    A.M. Dykhne, Quasiclassical particles in a one-dimensional periodic potential, Sov. Phys. JETP 13 (1961) 999 [J. Exp. Theor. Phys. 40 (1961) 1423].Google Scholar
  119. [119]
    J.N.L. Connor, T. Uzer, R.A. Marcus and A.D. Smith, Eigenvalues of the Schrödinger equation for a periodic potential with nonperiodic boundary conditions: a uniform semiclassical analysis, J. Chem. Phys. 80 (1984) 5095.ADSMathSciNetCrossRefGoogle Scholar
  120. [120]
    M.I. Weinstein and J.B. Keller, Hill’s equation with a large potential, SIAM J. Appl. Math. 45 (1985) 200.MathSciNetMATHCrossRefGoogle Scholar
  121. [121]
    M.I. Weinstein and J.B. Keller, Asymptotic behavior of stability regions for Hill’s equation, SIAM J. Appl. Math. 47 (1987) 941.MathSciNetMATHCrossRefGoogle Scholar
  122. [122]
    J.L. Dunham, The Wentzel-Brillouin-Kramers method of solving the wave equation, Phys. Rev. 41 (1932) 713.ADSMATHCrossRefGoogle Scholar
  123. [123]
    C.M. Bender and S. Orzsag, Advanced mathematical methods for scientists and engineers, Wiley, New York U.S.A. (1999).CrossRefGoogle Scholar
  124. [124]
    B.C. Berndt, Ramanujan’s notebooks, part III, chapter 17, Springer, New York U.S.A. (1991).Google Scholar
  125. [125]
    M.-x. Huang and A. Klemm, Holomorphic anomaly in gauge theories and matrix models, JHEP 09 (2007) 054 [hep-th/0605195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  126. [126]
    M.-x. Huang and A. Klemm, Holomorphicity and modularity in Seiberg-Witten theories with matter, JHEP 07 (2010) 083 [arXiv:0902.1325] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  127. [127]
    M.-x. Huang, Modular anomaly from holomorphic anomaly in mass deformed \( \mathcal{N} \) = 2 superconformal field theories, Phys. Rev. D 87 (2013) 105010 [arXiv:1302.6095] [INSPIRE].ADSGoogle Scholar
  128. [128]
    M. Billó, M. Frau, L. Gallot, A. Lerda and I. Pesando, Modular anomaly equation, heat kernel and S-duality in \( \mathcal{N} \) = 2 theories, JHEP 11 (2013) 123 [arXiv:1307.6648] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  129. [129]
    M. Billó et al., Modular anomaly equations in \( \mathcal{N} \) = 2 theories and their large-N limit, JHEP 10 (2014) 131 [arXiv:1406.7255] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    S.K. Ashok et al., Modular anomaly equations and S-duality in \( \mathcal{N} \) = 2 conformal SQCD, JHEP 10 (2015) 091 [arXiv:1507.07476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  131. [131]
    P.C. Argyres and A.E. Faraggi, The vacuum structure and spectrum of N = 2 supersymmetric SU(N ) gauge theory, Phys. Rev. Lett. 74 (1995) 3931 [hep-th/9411057] [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    P.C. Argyres, M.R. Plesser and A.D. Shapere, Coulomb phase of N = 2 supersymmetric QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  133. [133]
    P.C. Argyres and A.D. Shapere, The vacuum structure of N = 2 super-QCD with classical gauge groups, Nucl. Phys. B 461 (1996) 437 [hep-th/9509175] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  134. [134]
    M.R. Douglas and S.H. Shenker, Dynamics of SU(N ) supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 271 [hep-th/9503163] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  135. [135]
    A. Hanany and Y. Oz, On the quantum moduli space of vacua of N = 2 supersymmetric SU(N c) gauge theories, Nucl. Phys. B 452 (1995) 283 [hep-th/9505075] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  136. [136]
    J.A. Minahan and D. Nemeschansky, Hyperelliptic curves for supersymmetric Yang-Mills, Nucl. Phys. B 464 (1996) 3 [hep-th/9507032] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  137. [137]
    J.A. Minahan and D. Nemeschansky, N = 2 super Yang-Mills and subgroups of \( \mathrm{S}\mathrm{L}\left(2,\mathbb{Z}\right) \), Nucl. Phys. B 468 (1996) 72 [hep-th/9601059] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  138. [138]
    S.K. Ashok, F. Cachazo and E. Dell’Aquila, Strebel differentials with integral lengths and Argyres-Douglas singularities, hep-th/0610080 [INSPIRE].
  139. [139]
    R.S. Maier, Algebraic hypergeometric transformations of modular origin, T. Am. Math. Soc. 359 (2007) 3859.MathSciNetMATHCrossRefGoogle Scholar
  140. [140]
    R. Vidunas, Algebraic transformations of Gauss hypergeometric functions, Funkc. Ekvacioj 52 (2009) 139 [math.CA/0408269].
  141. [141]
    F. Fauvet, J.-P. Ramis, F. Richard-Jung and J. Thomann, Stokes phenomenon for the prolate spheroidal wave equation, Appl. Num. Math. 60 (2010) 1309.MathSciNetMATHCrossRefGoogle Scholar
  142. [142]
    F. Richard-Jung, J.-P. Ramis, J. Thomann and F. Fauvet, New characterizations for the eigenvalues of the prolate spheroidal wave equation, Stud. Appl. Math. 138 (2016) 3.MathSciNetMATHCrossRefGoogle Scholar
  143. [143]
    K. Saito, Primitive automorphic forms, in Mathematics unlimited: 2001 and beyond, B. Engquist and W. Schmid eds., Springer, Berlin Germany (2001).Google Scholar
  144. [144]
    Y. Sibuya, Subdominant solutions of linear differential equations with polynomial coefficients, Mich. Math. J. 14 (1967) 53.MathSciNetMATHCrossRefGoogle Scholar
  145. [145]
    J. Halverson, Strong coupling in F-theory and geometrically non-Higgsable seven-branes, Nucl. Phys. B 919 (2017) 267 [arXiv:1603.01639] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Gökçe Basar
    • 1
  • Gerald V. Dunne
    • 2
  • Mithat Ünsal
    • 3
  1. 1.Maryland Center for Fundamental PhysicsUniversity of MarylandCollege ParkU.S.A.
  2. 2.Department of PhysicsUniversity of ConnecticutStorrsU.S.A.
  3. 3.Department of PhysicsNorth Carolina State UniversityRaleighU.S.A.

Personalised recommendations