Right-handed charged currents in the era of the Large Hadron Collider

  • S. Alioli
  • V. Cirigliano
  • W. Dekens
  • J. de Vries
  • E. Mereghetti
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss the phenomenology of right-handed charged currents in the frame-work of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the W to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. We subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments, that would uniquely point to right-handed charged currents.

Keywords

Beyond Standard Model CP violation Higgs Physics 

References

  1. [1]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].ADSGoogle Scholar
  2. [2]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  3. [3]
    G. Senjanović, Spontaneous breakdown of parity in a class of gauge theories, Nucl. Phys. B 153 (1979) 334 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  7. [7]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  8. [8]
    A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-right symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Senjanović and V. Tello, Right handed quark mixing in left-right symmetric theory, Phys. Rev. Lett. 114 (2015) 071801 [arXiv:1408.3835] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Senjanović and V. Tello, Restoration of parity and the right-handed analog of the CKM matrix, Phys. Rev. D 94 (2016) 095023 [arXiv:1502.05704] [INSPIRE].ADSGoogle Scholar
  11. [11]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, An ϵ improvement from right-handed currents, Phys. Lett. B 767 (2017) 1 [arXiv:1612.03914] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  13. [13]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  15. [15]
    ATLAS collaboration, Measurement of W boson angular distributions in events with high transverse momentum jets at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Phys. Lett. B 765 (2017) 132 [arXiv:1609.07045] [INSPIRE].
  16. [16]
    ATLAS collaboration, Measurement of W ± and Z-boson production cross sections in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 759 (2016) 601 [arXiv:1603.09222] [INSPIRE].
  17. [17]
    ATLAS collaboration, Measurement of k T splitting scales in Wℓν events at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2432 [arXiv:1302.1415] [INSPIRE].
  18. [18]
    ATLAS collaboration, Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS experiment, Eur. Phys. J. C 72 (2012) 2001 [arXiv:1203.2165] [INSPIRE].
  19. [19]
    ATLAS collaboration, Measurement of the transverse momentum distribution of W bosons in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 012005 [arXiv:1108.6308] [INSPIRE].
  20. [20]
    CMS collaboration, Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2017) 096 [arXiv:1606.05864] [INSPIRE].
  21. [21]
    CMS collaboration, Measurement of the differential cross section and charge asymmetry for inclusive ppW ± + X production at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 469 [arXiv:1603.01803] [INSPIRE].
  22. [22]
    CMS collaboration, Measurement of inclusive W and Z boson production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 112 (2014) 191802 [arXiv:1402.0923] [INSPIRE].
  23. [23]
    CMS collaboration, Measurement of the inclusive W and Z production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2011) 132 [arXiv:1107.4789] [INSPIRE].
  24. [24]
    CMS collaboration, Measurement of the lepton charge asymmetry in inclusive W production in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 04 (2011) 050 [arXiv:1103.3470] [INSPIRE].
  25. [25]
    CMS collaboration, Measurements of inclusive W and Z cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2011) 080 [arXiv:1012.2466] [INSPIRE].
  26. [26]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].
  27. [27]
    K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(α s2), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
  28. [28]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Catani, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at hadron colliders: transverse-momentum resummation and leptonic decay, JHEP 12 (2015) 047 [arXiv:1507.06937] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Karlberg, E. Re and G. Zanderighi, NNLOPS accurate Drell-Yan production, JHEP 09 (2014) 134 [arXiv:1407.2940] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Alioli et al., Precision studies of observables in ppWℓν and ppγ, Z + processes at the LHC, submitted to Working Group Report (2016) [arXiv:1606.02330] [INSPIRE].
  33. [33]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1 [INSPIRE].Google Scholar
  35. [35]
    Z. Bern et al., Left-handed W bosons at the LHC, Phys. Rev. D 84 (2011) 034008 [arXiv:1103.5445] [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Ferrera, M. Grazzini and F. Tramontano, Associated W H production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Ferrera, M. Grazzini and F. Tramontano, Higher-order QCD effects for associated W H production and decay at the LHC, JHEP 04 (2014) 039 [arXiv:1312.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.M. Campbell, R.K. Ellis and C. Williams, Associated production of a Higgs boson at NNLO, JHEP 06 (2016) 179 [arXiv:1601.00658] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    W. Astill, W. Bizon, E. Re and G. Zanderighi, NNLOPS accurate associated HW production, JHEP 06 (2016) 154 [arXiv:1603.01620] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Luisoni, P. Nason, C. Oleari and F. Tramontano, HW ± /HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP 10 (2013) 083 [arXiv:1306.2542] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  42. [42]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a \( b\overline{b} \) pair in pp collisions at 13 TeV using the ATLAS detector, ATLAS-CONF-2016-091, CERN, Geneva Switzerland, (2016).
  45. [45]
    F.A. Dreyer and A. Karlberg, Vector-boson fusion Higgs production at three loops in QCD, Phys. Rev. Lett. 117 (2016) 072001 [arXiv:1606.00840] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082002 [arXiv:1506.02660] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  48. [48]
    ATLAS collaboration, Comprehensive measurements of t-channel single top-quark production cross sections at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112006 [arXiv:1406.7844] [INSPIRE].
  49. [49]
    CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 035 [arXiv:1209.4533] [INSPIRE].
  50. [50]
    ATLAS collaboration, Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector, arXiv:1702.02859 [INSPIRE].
  51. [51]
    CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |V tb| CKM matrix element in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 090 [arXiv:1403.7366] [INSPIRE].
  52. [52]
    ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 04 (2017) 086 [arXiv:1609.03920] [INSPIRE].
  53. [53]
    CMS collaboration, Cross section measurement of t-channel single top quark production in pp collisions at \( \sqrt{s}=13 \) TeV, submitted to Phys. Lett. B (2016) [arXiv:1610.00678] [INSPIRE].
  54. [54]
    ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment, JHEP 01 (2016) 064 [arXiv:1510.03752] [INSPIRE].
  55. [55]
    CMS collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 112 (2014) 231802 [arXiv:1401.2942] [INSPIRE].
  56. [56]
    CDF and D0 collaborations, T.A. Aaltonen et al., Observation of s-channel production of single top quarks at the Tevatron, Phys. Rev. Lett. 112 (2014) 231803 [arXiv:1402.5126] [INSPIRE].
  57. [57]
    M. Brucherseifer, F. Caola and K. Melnikov, On the NNLO QCD corrections to single-top production at the LHC, Phys. Lett. B 736 (2014) 58 [arXiv:1404.7116] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Brucherseifer, F. Caola and K. Melnikov, O(α s2) corrections to fully-differential top quark decays, JHEP 04 (2013) 059 [arXiv:1301.7133] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Gao, C.S. Li and H.X. Zhu, Top quark decay at next-to-next-to leading order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD corrections to t-channel single top-quark production and decay, Phys. Rev. D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE].ADSGoogle Scholar
  61. [61]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    R. Frederix, E. Re and P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO, JHEP 09 (2012) 130 [arXiv:1207.5391] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    T. Ježo and P. Nason, On the treatment of resonances in next-to-leading order calculations matched to a parton shower, JHEP 12 (2015) 065 [arXiv:1509.09071] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A.S. Papanastasiou, R. Frederix, S. Frixione, V. Hirschi and F. Maltoni, Single-top t-channel production with off-shell and non-resonant effects, Phys. Lett. B 726 (2013) 223 [arXiv:1305.7088] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    R. Frederix, S. Frixione, A.S. Papanastasiou, S. Prestel and P. Torrielli, Off-shell single-top production at NLO matched to parton showers, JHEP 06 (2016) 027 [arXiv:1603.01178] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [INSPIRE].
  67. [67]
    S. Alekhin et al., The PDF4LHC working group interim report, arXiv:1101.0536 [INSPIRE].
  68. [68]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  69. [69]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  72. [72]
    CDF and D0 collaboration, T. Aaltonen et al., Combination of CDF and D0 measurements of the W boson helicity in top quark decays, Phys. Rev. D 85 (2012) 071106 [arXiv:1202.5272] [INSPIRE].
  73. [73]
    ATLAS collaboration, Measurement of the W boson polarization in top quark decays with the ATLAS detector, JHEP 06 (2012) 088 [arXiv:1205.2484] [INSPIRE].
  74. [74]
    CMS collaboration, Measurement of the W -boson helicity in top-quark decays from tt production in lepton+jets events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2013) 167 [arXiv:1308.3879] [INSPIRE].
  75. [75]
    ATLAS collaboration, Search for anomalous couplings in the W tb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector, JHEP 04 (2016) 023 [arXiv:1510.03764] [INSPIRE].
  76. [76]
    CMS collaboration, Measurement of the W boson helicity in events with a single reconstructed top quark in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 053 [arXiv:1410.1154] [INSPIRE].
  77. [77]
    ATLAS collaboration, Measurement of the W boson polarisation in tt events from pp collisions at \( \sqrt{s}=8 \) TeV in the lepton+jets channel with ATLAS, arXiv:1612.02577 [INSPIRE].
  78. [78]
    A. Czarnecki, J.G. Korner and J.H. Piclum, Helicity fractions of W bosons from top quark decays at NNLO in QCD, Phys. Rev. D 81 (2010) 111503 [arXiv:1005.2625] [INSPIRE].ADSGoogle Scholar
  79. [79]
    J. Drobnak, S. Fajfer and J.F. Kamenik, New physics in tbW decay at next-to-leading order in QCD, Phys. Rev. D 82 (2010) 114008 [arXiv:1010.2402] [INSPIRE].ADSGoogle Scholar
  80. [80]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  81. [81]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].
  82. [82]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92 (2015) 033016 [arXiv:1503.00290] [INSPIRE].ADSGoogle Scholar
  83. [83]
    Y. Soreq, H.X. Zhu and J. Zupan, Light quark Yukawa couplings from Higgs kinematics, JHEP 12 (2016) 045 [arXiv:1606.09621] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Yukawa enhancement of Z-mediated new physics in ΔS = 2 and ΔB = 2 processes, arXiv:1703.04753 [INSPIRE].
  85. [85]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
  86. [86]
    W. Dekens and J. de Vries, Renormalization group running of dimension-six sources of parity and time-reversal violation, JHEP 05 (2013) 149 [arXiv:1303.3156] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  87. [87]
    S. Weinberg, Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    F. Wilczek and A. Zee, ΔI = 1/2 rule and right-handed currents: heavy quark expansion and limitation on Zweig’s rule, Phys. Rev. D 15 (1977) 2660 [INSPIRE].ADSGoogle Scholar
  89. [89]
    E. Braaten, C.-S. Li and T.-C. Yuan, The evolution of Weinberg’s gluonic CP violation operator, Phys. Rev. Lett. 64 (1990) 1709 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    P.L. Cho and M. Misiak, bsγ decay in SU(2)L × SU(2)R × U(1) extensions of the Standard Model, Phys. Rev. D 49 (1994) 5894 [hep-ph/9310332] [INSPIRE].
  91. [91]
    M. Misiak, private communication, (2016).Google Scholar
  92. [92]
    D. Chang, C.S. Li and T.C. Yuan, Larger neutron electric dipole moment in left-right symmetric models, Phys. Rev. D 42 (1990) 867 [INSPIRE].ADSGoogle Scholar
  93. [93]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    J.C. Hardy and I.S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2014 critical survey, with precise results for V ud and CKM unitarity, Phys. Rev. C 91 (2015) 025501 [arXiv:1411.5987] [INSPIRE].ADSGoogle Scholar
  95. [95]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., An evaluation of |V us| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].
  97. [97]
    H.P. Mumm et al., A new limit on time-reversal violation in beta decay, Phys. Rev. Lett. 107 (2011) 102301 [arXiv:1104.2778] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    K.K. Vos, H.W. Wilschut and R.G.E. Timmermans, Symmetry violations in nuclear and neutron beta decay, Rev. Mod. Phys. 87 (2015) 1483 [arXiv:1509.04007] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J.D. Jackson, S.B. Treiman and H.W. Wyld, Possible tests of time reversal invariance in beta decay, Phys. Rev. 106 (1957) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10 (2000) 1 [INSPIRE].Google Scholar
  101. [101]
    Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, arXiv:1612.07233 [INSPIRE].
  102. [102]
    D. Becirevic, S. Fajfer, I. Nisandzic and A. Tayduganov, Angular distributions of \( \overline{B}\to {D}^{\left(\ast \right)}\ell \overline{\nu}\ell \) decays and search of new physics, arXiv:1602.03030 [INSPIRE].
  103. [103]
    C.W. Bauer, Z. Ligeti, M. Luke and A.V. Manohar, B decay shape variables and the precision determination of |V cb| and m b, Phys. Rev. D 67 (2003) 054012 [hep-ph/0210027] [INSPIRE].
  104. [104]
    P. Gambino, B semileptonic moments at NNLO, JHEP 09 (2011) 055 [arXiv:1107.3100] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  105. [105]
    P. Gambino and C. Schwanda, Inclusive semileptonic fits, heavy quark masses and V cb, Phys. Rev. D 89 (2014) 014022 [arXiv:1307.4551] [INSPIRE].ADSGoogle Scholar
  106. [106]
    A. Alberti, P. Gambino, K.J. Healey and S. Nandi, Precision determination of the Cabibbo-Kobayashi-Maskawa element V cb, Phys. Rev. Lett. 114 (2015) 061802 [arXiv:1411.6560] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    B. Dassinger, R. Feger and T. Mannel, Complete Michel parameter analysis of inclusive semileptonic bc transition, Phys. Rev. D 79 (2009) 075015 [arXiv:0803.3561] [INSPIRE].ADSGoogle Scholar
  108. [108]
    R. Feger, T. Mannel, V. Klose, H. Lacker and T. Luck, Limit on a right-handed admixture to the weak bc current from semileptonic decays, Phys. Rev. D 82 (2010) 073002 [arXiv:1003.4022] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A. Crivellin and S. Pokorski, Can the differences in the determinations of V ub and V cb be explained by new physics?, Phys. Rev. Lett. 114 (2015) 011802 [arXiv:1407.1320] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    F.U. Bernlochner, Z. Ligeti and S. Turczyk, New ways to search for right-handed current in \( B\to \rho \ell \overline{\nu} \) decay, Phys. Rev. D 90 (2014) 094003 [arXiv:1408.2516] [INSPIRE].ADSGoogle Scholar
  111. [111]
    C.W. Bauer, Z. Ligeti and M.E. Luke, Precision determination of |V ub| from inclusive decays, Phys. Rev. D 64 (2001) 113004 [hep-ph/0107074] [INSPIRE].
  112. [112]
    B.O. Lange, M. Neubert and G. Paz, Theory of charmless inclusive B decays and the extraction of V ub, Phys. Rev. D 72 (2005) 073006 [hep-ph/0504071] [INSPIRE].
  113. [113]
    W. Detmold, C. Lehner and S. Meinel, \( {\varLambda}_b\to p{\ell}^{-}{\overline{\nu}}_{\ell } \) and \( {\varLambda}_b\to\ {\varLambda}_c{\ell}^{-}{\overline{\nu}}_{\ell } \) form factors from lattice QCD with relativistic heavy quarks, Phys. Rev. D 92 (2015) 034503 [arXiv:1503.01421] [INSPIRE].ADSGoogle Scholar
  114. [114]
    LHCb collaboration, Determination of the quark coupling strength |V ub| using baryonic decays, Nature Phys. 11 (2015) 743 [arXiv:1504.01568] [INSPIRE].
  115. [115]
    A.V. Manohar and M.B. Wise, Inclusive semileptonic B and polarized Λb decays from QCD, Phys. Rev. D 49 (1994) 1310 [hep-ph/9308246] [INSPIRE].
  116. [116]
    ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  117. [117]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
  118. [118]
    J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].ADSGoogle Scholar
  119. [119]
    W.C. Griffith, M.D. Swallows, T.H. Loftus, M.V. Romalis, B.R. Heckel and E.N. Fortson, Improved limit on the permanent electric dipole moment of 199 Hg, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    B. Graner, Y. Chen, E.G. Lindahl and B.R. Heckel, Reduced limit on the permanent electric dipole moment of 199 Hg, Phys. Rev. Lett. 116 (2016) 161601 [arXiv:1601.04339] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    M.A. Rosenberry and T.E. Chupp, Atomic electric dipole moment measurement using spin exchange pumped masers of 129 Xe and 3 He, Phys. Rev. Lett. 86 (2001) 22.ADSCrossRefGoogle Scholar
  122. [122]
    M. Bishof et al., Improved limit on the 225 Ra electric dipole moment, Phys. Rev. C 94 (2016) 025501 [arXiv:1606.04931] [INSPIRE].ADSGoogle Scholar
  123. [123]
    R.H. Parker et al., First measurement of the atomic electric dipole moment of 225 Ra, Phys. Rev. Lett. 114 (2015) 233002 [arXiv:1504.07477] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    K. Kumar, Z.-T. Lu and M.J. Ramsey-Musolf, Working group report: nucleons, nuclei and atoms, in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A., 29 July-6 August 2013 [arXiv:1312.5416] [INSPIRE].
  125. [125]
    T. Chupp and M. Ramsey-Musolf, Electric dipole moments: a global analysis, Phys. Rev. C 91 (2015) 035502 [arXiv:1407.1064] [INSPIRE].ADSGoogle Scholar
  126. [126]
    J. de Vries, E. Mereghetti, R.G.E. Timmermans and U. van Kolck, The effective chiral Lagrangian from dimension-six parity and time-reversal violation, Annals Phys. 338 (2013) 50 [arXiv:1212.0990] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  127. [127]
    J. Bsaisou, U.-G. Meißner, A. Nogga and A. Wirzba, P - and T -violating Lagrangians in chiral effective field theory and nuclear electric dipole moments, Annals Phys. 359 (2015) 317 [arXiv:1412.5471] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  128. [128]
    T. Blum et al., Lattice determination of the K → (ππ)I=2 decay amplitude A 2, Phys. Rev. D 86 (2012) 074513 [arXiv:1206.5142] [INSPIRE].ADSGoogle Scholar
  129. [129]
    T. Blum et al., Kππ ΔI = 3/2 decay amplitude in the continuum limit, Phys. Rev. D 91 (2015) 074502 [arXiv:1502.00263] [INSPIRE].ADSGoogle Scholar
  130. [130]
    J. de Vries, E. Mereghetti, C.-Y. Seng and A. Walker-Loud, Lattice QCD spectroscopy for hadronic CP-violation, Phys. Lett. B 766 (2017) 254 [arXiv:1612.01567] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    M. Pospelov and A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks, Phys. Rev. D 63 (2001) 073015 [hep-ph/0010037] [INSPIRE].
  132. [132]
    O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP-violation with the deuteron electric dipole moment, Phys. Rev. D 70 (2004) 016003 [hep-ph/0402023] [INSPIRE].
  133. [133]
    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].
  134. [134]
    J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of neutron electric dipole moment with QCD sum rules, Phys. Rev. D 85 (2012) 114044 [arXiv:1204.2653] [INSPIRE].ADSGoogle Scholar
  135. [135]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    C.-Y. Seng, J. de Vries, E. Mereghetti, H.H. Patel and M. Ramsey-Musolf, Nucleon electric dipole moments and the isovector parity- and time-reversal-odd pion-nucleon coupling, Phys. Lett. B 736 (2014) 147 [arXiv:1401.5366] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  137. [137]
    A. Maiezza and M. Nemevšek, Strong P invariance, neutron electric dipole moment and minimal left-right parity at LHC, Phys. Rev. D 90 (2014) 095002 [arXiv:1407.3678] [INSPIRE].ADSGoogle Scholar
  138. [138]
    T. Bhattacharya, V. Cirigliano, R. Gupta, H.-W. Lin and B. Yoon, Neutron electric dipole moment and tensor charges from lattice QCD, Phys. Rev. Lett. 115 (2015) 212002 [arXiv:1506.04196] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    PNDME collaboration, T. Bhattacharya et al., Iso-vector and iso-scalar tensor charges of the nucleon from lattice QCD, Phys. Rev. D 92 (2015) 094511 [arXiv:1506.06411] [INSPIRE].
  140. [140]
    T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, H.-W. Lin and B. Yoon, Axial, scalar and tensor charges of the nucleon from 2 + 1 + 1-flavor lattice QCD, Phys. Rev. D 94 (2016) 054508 [arXiv:1606.07049] [INSPIRE].ADSGoogle Scholar
  141. [141]
    T. Bhattacharya, V. Cirigliano, R. Gupta, E. Mereghetti and B. Yoon, Neutron electric dipole moment from quark chromoelectric dipole moment, PoS (LATTICE 2015) 238 [arXiv:1601.02264] [INSPIRE].
  142. [142]
    T. Bhattacharya, V. Cirigliano, R. Gupta and B. Yoon, Quark chromoelectric dipole moment contribution to the neutron electric dipole moment, in Proceedings, 34th International Symposium on Lattice Field Theory (Lattice 2016), Southampton U.K., 24-30 July 2016 [PoS (LATTICE2016) 225] [arXiv:1612.08438] [INSPIRE].
  143. [143]
    M. Abramczyk, S. Aoki, T. Blum, T. Izubuchi, H. Ohki and S. Syritsyn, On lattice calculation of electric dipole moments and form factors of the nucleon, arXiv:1701.07792 [INSPIRE].
  144. [144]
    D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator and light gluinos, Phys. Rev. D 67 (2003) 015007 [hep-ph/0208257] [INSPIRE].
  145. [145]
    J.H. de Jesus and J. Engel, Time-reversal-violating Schiff moment of 199 Hg, Phys. Rev. C 72 (2005) 045503 [nucl-th/0507031] [INSPIRE].
  146. [146]
    J. Dobaczewski and J. Engel, Nuclear time-reversal violation and the Schiff moment of 225 Ra, Phys. Rev. Lett. 94 (2005) 232502 [nucl-th/0503057] [INSPIRE].
  147. [147]
    S. Ban, J. Dobaczewski, J. Engel and A. Shukla, Fully self-consistent calculations of nuclear Schiff moments, Phys. Rev. C 82 (2010) 015501 [arXiv:1003.2598] [INSPIRE].ADSGoogle Scholar
  148. [148]
    V.A. Dzuba, V.V. Flambaum and S.G. Porsev, Calculation of (P, T )-odd electric dipole moments for diamagnetic atoms 129 Xe, 171 Yb, 199 Hg, 211 Rn and 225 Ra, Phys. Rev. A 80 (2009) 032120 [arXiv:0906.5437] [INSPIRE].ADSCrossRefGoogle Scholar
  149. [149]
    J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric dipole moments of nucleons, nuclei and atoms: the Standard Model and beyond, Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371] [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    J. de Vries et al., Electric dipole moments of light nuclei from chiral effective field theory, Phys. Rev. C 84 (2011) 065501 [arXiv:1109.3604] [INSPIRE].ADSGoogle Scholar
  151. [151]
    Y. Singh and B.K. Sahoo, Rigorous limits for hadronic and semi-leptonic CP-violating coupling constants from the electric dipole moment of 199 Hg, Phys. Rev. A 91 (2015) 030501 [arXiv:1408.4337] [INSPIRE].ADSCrossRefGoogle Scholar
  152. [152]
    Y. Singh and B.K. Sahoo, Electric dipole moment of 225 Ra due to P- and T-violating weak interactions, Phys. Rev. A 92 (2015) 022502 [arXiv:1504.00269] [INSPIRE].ADSCrossRefGoogle Scholar
  153. [153]
    N. Yamanaka and E. Hiyama, Enhancement of the CP-odd effect in the nuclear electric dipole moment of 6 Li, Phys. Rev. C 91 (2015) 054005 [arXiv:1503.04446] [INSPIRE].ADSGoogle Scholar
  154. [154]
    N. Yamanaka, B.K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi and B.P. Das, Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: a unique window to hadronic and semi-leptonic CP-violation, Eur. Phys. J. A 53 (2017) 54 [arXiv:1703.01570] [INSPIRE].ADSCrossRefGoogle Scholar
  155. [155]
    N. Yoshinaga, K. Higashiyama and R. Arai, Shell model estimate of nuclear electric dipole moments, Prog. Theor. Phys. 124 (2010) 1115.ADSCrossRefGoogle Scholar
  156. [156]
    CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].
  157. [157]
    M. Ciuchini, E. Franco, G. Martinelli and L. Reina, ϵ /ϵ at the next-to-leading order in QCD and QED, Phys. Lett. B 301 (1993) 263 [hep-ph/9212203] [INSPIRE].
  158. [158]
    A.J. Buras, M. Jamin and M.E. Lautenbacher, The anatomy of ϵ /ϵ beyond leading logarithms with improved hadronic matrix elements, Nucl. Phys. B 408 (1993) 209 [hep-ph/9303284] [INSPIRE].
  159. [159]
    M. Ciuchini, E. Franco, G. Martinelli, L. Reina and L. Silvestrini, An upgraded analysis of ϵ/ϵ at the next-to-leading order, Z. Phys. C 68 (1995) 239 [hep-ph/9501265] [INSPIRE].
  160. [160]
    RBC and UKQCD collaborations, Z. Bai et al., Standard Model prediction for direct CP-violation in Kππ decay, Phys. Rev. Lett. 115 (2015) 212001 [arXiv:1505.07863] [INSPIRE].
  161. [161]
    P. Chen, H. Ke and X. Ji, Direct CP-violation in K-decay and minimal left-right symmetry scale, Phys. Lett. B 677 (2009) 157 [arXiv:0810.2576] [INSPIRE].ADSCrossRefGoogle Scholar
  162. [162]
    S. Bertolini, A. Maiezza and F. Nesti, Kππ hadronic matrix elements of left-right current-current operators, Phys. Rev. D 88 (2013) 034014 [arXiv:1305.5739] [INSPIRE].ADSGoogle Scholar
  163. [163]
    I. Baum, V. Lubicz, G. Martinelli, L. Orifici and S. Simula, Matrix elements of the electromagnetic operator between kaon and pion states, Phys. Rev. D 84 (2011) 074503 [arXiv:1108.1021] [INSPIRE].ADSGoogle Scholar
  164. [164]
    T. Hurth, E. Lunghi and W. Porod, Untagged \( \overline{B}\to {X}_{s+d}\gamma \) CP asymmetry as a probe for new physics, Nucl. Phys. B 704 (2005) 56 [hep-ph/0312260] [INSPIRE].
  165. [165]
    M. Misiak et al., Estimate of \( B\left(\overline{B}\to {X}_s\gamma \right) \) at O(α s2), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].
  166. [166]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  167. [167]
    M. Czakon, P. Fiedler, T. Huber, M. Misiak, T. Schutzmeier and M. Steinhauser, The (Q 7 , Q 1,2) contribution to \( \overline{B}\to {X}_s\gamma \) at O(α s2), JHEP 04 (2015) 168 [arXiv:1503.01791] [INSPIRE].ADSCrossRefGoogle Scholar
  168. [168]
    W. Altmannshofer and D.M. Straub, Cornering new physics in bs transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].ADSCrossRefGoogle Scholar
  169. [169]
    W. Altmannshofer, P. Paradisi and D.M. Straub, Model-independent constraints on new physics in bs transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].ADSCrossRefGoogle Scholar
  170. [170]
    M. Benzke, S.J. Lee, M. Neubert and G. Paz, Long-distance dominance of the CP asymmetry in BX s,d + γ decays, Phys. Rev. Lett. 106 (2011) 141801 [arXiv:1012.3167] [INSPIRE].ADSCrossRefGoogle Scholar
  171. [171]
    A. Paul and D.M. Straub, Constraints on new physics from radiative B decays, JHEP 04 (2017) 027 [arXiv:1608.02556] [INSPIRE].ADSCrossRefGoogle Scholar
  172. [172]
    P. Ball and R. Zwicky, Time-dependent CP asymmetry in BK γ as a (quasi) null test of the Standard Model, Phys. Lett. B 642 (2006) 478 [hep-ph/0609037] [INSPIRE].
  173. [173]
    P. Ball, G.W. Jones and R. Zwicky, BV γ beyond QCD factorisation, Phys. Rev. D 75 (2007) 054004 [hep-ph/0612081] [INSPIRE].
  174. [174]
    A.J. Buras and R. Fleischer, Quark mixing, CP-violation and rare decays after the top quark discovery, Adv. Ser. Direct. High Energy Phys. 15 (1998) 65 [hep-ph/9704376] [INSPIRE].
  175. [175]
    M. Artuso, G. Borissov and A. Lenz, CP violation in the B s0 system, Rev. Mod. Phys. 88 (2016) 045002 [arXiv:1511.09466] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  176. [176]
    A.J. Buras, Weak Hamiltonian, CP-violation and rare decays, in Probing the Standard Model of particle interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches France, 28 July-5 September 1997 [hep-ph/9806471] [INSPIRE].
  177. [177]
    A.J. Buras, M. Gorbahn, S. Jäger and M. Jamin, Improved anatomy of ϵ /ϵ in the Standard Model, JHEP 11 (2015) 202 [arXiv:1507.06345] [INSPIRE].ADSCrossRefGoogle Scholar
  178. [178]
    A.J. Buras and J.-M. Gérard, Upper bounds on ϵ /ϵ parameters B 6(1/2) and \( {B}_{{}^8}^{{}^{\left(3/2\right)}} \) from large-N QCD and other news, JHEP 12 (2015) 008 [arXiv:1507.06326] [INSPIRE].ADSCrossRefGoogle Scholar
  179. [179]
    T. Kitahara, U. Nierste and P. Tremper, Singularity-free next-to-leading order ΔS = 1 renormalization group evolution and ϵ K'/ϵ K in the Standard Model and beyond, JHEP 12 (2016) 078 [arXiv:1607.06727] [INSPIRE].ADSCrossRefGoogle Scholar
  180. [180]
    A.J. Buras and J.-M. Gerard, Final state interactions in Kππ decays: ΔI = 1/2 rule vs. ϵ, Eur. Phys. J. C 77 (2017) 10 [arXiv:1603.05686] [INSPIRE].
  181. [181]
    Y.T. Chien, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions, JHEP 02 (2016) 011 [arXiv:1510.00725] [INSPIRE].ADSCrossRefGoogle Scholar
  182. [182]
    Y. Jiang and M. Trott, On the non-minimal character of the SMEFT, arXiv:1612.02040 [INSPIRE].
  183. [183]
    V. Cirigliano, J. Jenkins and M. Gonzalez-Alonso, Semileptonic decays of light quarks beyond the Standard Model, Nucl. Phys. B 830 (2010) 95 [arXiv:0908.1754] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  184. [184]
    V. Cirigliano, M. González-Alonso and M.L. Graesser, Non-standard charged current interactions: beta decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].ADSCrossRefGoogle Scholar
  185. [185]
    E. Berkowitz et al., An accurate calculation of the nucleon axial charge with lattice QCD, arXiv:1704.01114 [INSPIRE].
  186. [186]
    V. Cirigliano, S. Gardner and B. Holstein, Beta decays and non-standard interactions in the LHC era, Prog. Part. Nucl. Phys. 71 (2013) 93 [arXiv:1303.6953] [INSPIRE].ADSCrossRefGoogle Scholar
  187. [187]
    M. González-Alonso and J. Martin Camalich, Global effective-field-theory analysis of new-physics effects in (semi)leptonic kaon decays, JHEP 12 (2016) 052 [arXiv:1605.07114] [INSPIRE].ADSCrossRefGoogle Scholar
  188. [188]
    T. Bhattacharya et al., Probing novel scalar and tensor interactions from (ultra)cold neutrons to the LHC, Phys. Rev. D 85 (2012) 054512 [arXiv:1110.6448] [INSPIRE].ADSGoogle Scholar
  189. [189]
    O. Naviliat-Cuncic and M. González-Alonso, Prospects for precision measurements in nuclear β decay at the LHC era, Annalen Phys. 525 (2013) 600 [arXiv:1304.1759] [INSPIRE].ADSCrossRefGoogle Scholar
  190. [190]
    V. Bernard, M. Oertel, E. Passemar and J. Stern, Tests of non-standard electroweak couplings of right-handed quarks, JHEP 01 (2008) 015 [arXiv:0707.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  191. [191]
    W.J. Stirling and E. Vryonidou, Electroweak gauge boson polarisation at the LHC, JHEP 07 (2012) 124 [arXiv:1204.6427] [INSPIRE].ADSCrossRefGoogle Scholar
  192. [192]
    B. Grzadkowski and M. Misiak, Anomalous W tb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [Erratum ibid. D 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].
  193. [193]
    J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B 812 (2009) 181 [arXiv:0811.3842] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  194. [194]
    G.A. Gonzalez-Sprinberg, R. Martinez and J. Vidal, Top quark tensor couplings, JHEP 07 (2011) 094 [Erratum ibid. 05 (2013) 117] [arXiv:1105.5601] [INSPIRE].
  195. [195]
    J. Drobnak, S. Fajfer and J.F. Kamenik, Probing anomalous tW b interactions with rare B decays, Nucl. Phys. B 855 (2012) 82 [arXiv:1109.2357] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  196. [196]
    Q.-H. Cao, B. Yan, J.-H. Yu and C. Zhang, A general analysis of W tb anomalous couplings, arXiv:1504.03785 [INSPIRE].
  197. [197]
    Z. Hioki and K. Ohkuma, Full analysis of general non-standard tbW couplings, Phys. Lett. B 752 (2016) 128 [arXiv:1511.03437] [INSPIRE].ADSCrossRefGoogle Scholar
  198. [198]
    M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J. C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].ADSCrossRefGoogle Scholar
  199. [199]
    J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].ADSGoogle Scholar
  200. [200]
    C. Zhang, N. Greiner and S. Willenbrock, Constraints on non-standard top quark couplings, Phys. Rev. D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].ADSGoogle Scholar
  201. [201]
    J. de Blas, M. Chala and J. Santiago, Renormalization group constraints on new top interactions from electroweak precision data, JHEP 09 (2015) 189 [arXiv:1507.00757] [INSPIRE].ADSCrossRefGoogle Scholar
  202. [202]
    A. Buckley et al., Global fit of top quark effective theory to data, Phys. Rev. D 92 (2015) 091501 [arXiv:1506.08845] [INSPIRE].ADSGoogle Scholar
  203. [203]
    A. Buckley et al., Constraining top quark effective theory in the LHC run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].ADSCrossRefGoogle Scholar
  204. [204]
    O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model effective field theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].ADSCrossRefGoogle Scholar
  205. [205]
    N. Castro, J. Erdmann, C. Grunwald, K. Kröninger and N.-A. Rosien, EFTfitter — a tool for interpreting measurements in the context of effective field theories, Eur. Phys. J. C 76 (2016) 432 [arXiv:1605.05585] [INSPIRE].ADSCrossRefGoogle Scholar
  206. [206]
    J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for bs and bc transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].ADSCrossRefGoogle Scholar
  207. [207]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model effective field theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].ADSGoogle Scholar
  208. [208]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Is there room for CP-violation in the top-Higgs sector?, Phys. Rev. D 94 (2016) 016002 [arXiv:1603.03049] [INSPIRE].ADSGoogle Scholar
  209. [209]
    A. Crivellin, Effects of right-handed charged currents on the determinations of |V ub| and |V cb|, Phys. Rev. D 81 (2010) 031301 [arXiv:0907.2461] [INSPIRE].ADSGoogle Scholar
  210. [210]
    A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  211. [211]
    M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization for exclusive, nonleptonic B meson decays: general arguments and the case of heavy light final states, Nucl. Phys. B 591 (2000) 313 [hep-ph/0006124] [INSPIRE].
  212. [212]
    J. Chay and C. Kim, Analysis of the QCD improved factorization in BJ/ψK, hep-ph/0009244 [INSPIRE].
  213. [213]
    M. Beneke, Soft-collinear factorization in B decays, Nucl. Part. Phys. Proc. 261-262 (2015) 311 [arXiv:1501.07374] [INSPIRE].
  214. [214]
    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the Standard Model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].
  215. [215]
    X.-G. He, J. Tandean and G. Valencia, Penguin and box diagrams in unitary gauge, Eur. Phys. J. C 64 (2009) 681 [arXiv:0909.3638] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  216. [216]
    ETM collaboration, N. Carrasco et al., B-physics from N f = 2 tmQCD: the Standard Model and beyond, JHEP 03 (2014) 016 [arXiv:1308.1851] [INSPIRE].
  217. [217]
    A.J. Buras and J. Girrbach, Towards the identification of new physics through quark flavour violating processes, Rept. Prog. Phys. 77 (2014) 086201 [arXiv:1306.3775] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • S. Alioli
    • 1
  • V. Cirigliano
    • 2
  • W. Dekens
    • 2
    • 3
  • J. de Vries
    • 4
  • E. Mereghetti
    • 2
  1. 1.CERN Theory DivisionGeneva 23Switzerland
  2. 2.Theoretical Division, Los Alamos National LaboratoryLos AlamosU.S.A.
  3. 3.New Mexico Consortium, Los Alamos Research ParkLos AlamosU.S.A.
  4. 4.Nikhef, Theory GroupAmsterdamThe Netherlands

Personalised recommendations