Advertisement

Mixed-symmetry fields in de Sitter space: a group theoretical glance

  • Thomas BasileEmail author
  • Xavier Bekaert
  • Nicolas Boulanger
Open Access
Regular Article - Theoretical Physics

Abstract

We derive the characters of all unitary irreducible representations of the (d+1)-dimensional de Sitter spacetime isometry algebra \( \mathfrak{so}\left(1,\kern0.5em d+1\right) \), and propose a dictionary between those representations and massive or (partially) massless fields on de Sitter spacetime. We propose a way of taking the flat limit of representations in (anti-) de Sitter spaces in terms of these characters, and conjecture the spectrum resulting from taking the flat limit of mixed-symmetry fields in de Sitter spacetime. We identify the equivalent of the scalar singleton for the de Sitter (dS) spacetime.

Keywords

Field Theories in Higher Dimensions Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M.F. Labastida, Massless particles in arbitrary representations of the Lorentz group, Nucl. Phys. B 322 (1989) 185 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.M.F. Labastida, Massless fermionic free fields, Phys. Lett. B 186 (1987) 365 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    W. Siegel and B. Zwiebach, Gauge string fields from the light cone, Nucl. Phys. B 282 (1987) 125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D, R): duality and Poincaré lemma, Commun. Math. Phys. 245 (2004) 27 [hep-th/0208058] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D, R) II. Quadratic actions, Commun. Math. Phys. 271 (2007) 723 [hep-th/0606198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry II. Fermi fields, Nucl. Phys. B 828 (2010) 405 [arXiv:0904.4447] [INSPIRE].
  7. [7]
    E.D. Skvortsov, Mixed-symmetry massless fields in Minkowski space unfolded, JHEP 07 (2008) 004 [arXiv:0801.2268] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    R.R. Metsaev, Massless mixed symmetry bosonic free fields in d-dimensional anti-de Sitter space-time, Phys. Lett. B 354 (1995) 78 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    R.R. Metsaev, Arbitrary spin massless bosonic fields in d-dimensional anti-de Sitter space, Lect. Notes Phys. 524 (1999) 331 [hep-th/9810231] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R.R. Metsaev, Fermionic fields in the d-dimensional anti-de Sitter space-time, Phys. Lett. B 419 (1998) 49 [hep-th/9802097] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space (elementary particles in a curved space 7), Phys. Rev. D 20 (1979) 848 [INSPIRE].ADSGoogle Scholar
  12. [12]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].
  13. [13]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: II. Oscillator realization, JHEP 07 (2009) 014 [arXiv:0812.4438] [INSPIRE].
  14. [14]
    E.D. Skvortsov, Gauge fields in (A)dS d and connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].ADSzbMATHGoogle Scholar
  15. [15]
    E.D. Skvortsov, Gauge fields in (A)dS d within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    V.E. Lopatin and M.A. Vasiliev, Free massless bosonic fields of arbitrary spin in d-dimensional de Sitter space, Mod. Phys. Lett. A 3 (1988) 257 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    E. Joung, J. Mourad and R. Parentani, Group theoretical approach to quantum fields in de Sitter space I. The principle series, JHEP 08 (2006) 082 [hep-th/0606119] [INSPIRE].
  18. [18]
    E. Joung, J. Mourad and R. Parentani, Group theoretical approach to quantum fields in de Sitter space II. The complementary and discrete series, JHEP 09 (2007) 030 [arXiv:0707.2907] [INSPIRE].
  19. [19]
    T. Hirai, On irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962) 258.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    F. Schwarz, Unitary irreducible representations of the groups SO0(n, 1), J. Math. Phys. 12 (1971) 131.ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    I.T. Todorov, M.C. Mintchev and V.B. Petkova, Conformal invariance in quantum field theory, Scuola normale superiore, Classe di scienze, Pisa Italy, (1978) [INSPIRE].
  23. [23]
    L. Brink, R.R. Metsaev and M.A. Vasiliev, How massless are massless fields in AdS d, Nucl. Phys. B 586 (2000) 183 [hep-th/0005136] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    K.B. Alkalaev and M. Grigoriev, Unified BRST description of AdS gauge fields, Nucl. Phys. B 835 (2010) 197 [arXiv:0910.2690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Campoleoni and D. Francia, Maxwell-like Lagrangians for higher spins, JHEP 03 (2013) 168 [arXiv:1206.5877] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    G. Barnich and C. Troessaert, Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity, JHEP 11 (2013) 003 [arXiv:1309.0794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Campoleoni, H.A. Gonzalez, B. Oblak and M. Riegler, Rotating higher spin partition functions and extended BMS symmetries, JHEP 04 (2016) 034 [arXiv:1512.03353] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    C. Sleight and M. Taronna, Higher-spin algebras, holography and flat space, JHEP 02 (2017) 095 [arXiv:1609.00991] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Ponomarev and E.D. Skvortsov, Light-front higher-spin theories in flat space, J. Phys. A 50 (2017) 095401 [arXiv:1609.04655] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    E.A. Thieleker, The unitary representations of the generalized Lorentz groups, Trans. Amer. Math. Soc. 199 (1974) 327.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A.M. Gavrilik and A.U. Klimyk, Analysis of the representations of the Lorentz and Euclidean groups of n-th order, tech. rep. ITP-75-18-E, Inst. Theor. Phys., Kiev Ukraine, (1975).Google Scholar
  32. [32]
    A. Knapp, Representation theory of semisimple groups: an overview based on examples, Princeton Mathematical Series, Princeton University Press, Princeton U.S.A., (1986).Google Scholar
  33. [33]
    A. Knapp, Lie groups beyond an introduction, Progress in Mathematics, Birkhäuser, Basel Switzerland, (2002).Google Scholar
  34. [34]
    V.K. Dobrev, Intertwining operator realization of the AdS/CFT correspondence, Nucl. Phys. B 553 (1999) 559 [hep-th/9812194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A.O. Barut and R. Raczka, Theory of group representations and applications, World Scientific, Singapore, (1986) [INSPIRE].
  36. [36]
    T. Hirai, The characters of irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 41 (1965) 526.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    J. Mickelsson and J. Niederle, Contractions of representations of de Sitter groups, Commun. Math. Phys. 27 (1972) 167 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A.M. Gavrilik and A.U. Klimyk, The representations of the groups U(n, 1) and SO(o)(n, 1), (1976) [INSPIRE].
  39. [39]
    O.V. Shaynkman, I. Yu. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys. 18 (2006) 823 [hep-th/0401086] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Beccaria, X. Bekaert and A.A. Tseytlin, Partition function of free conformal higher spin theory, JHEP 08 (2014) 113 [arXiv:1406.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Higuchi, Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter group SO(N, 1), J. Math. Phys. 28 (1987) 1553 [Erratum ibid. 43 (2002) 6385] [INSPIRE].
  42. [42]
    S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys. 154 (1984) 396 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    S. Deser and R.I. Nepomechie, Anomalous propagation of gauge fields in conformally flat spaces, Phys. Lett. B 132 (1983) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    E. Joung and K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP 01 (2016) 003 [arXiv:1508.07332] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    S. Gwak, J. Kim and S.-J. Rey, Massless and massive higher spins from anti-de Sitter space waveguide, JHEP 11 (2016) 024 [arXiv:1605.06526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    M. Günaydin, E.D. Skvortsov and T. Tran, Exceptional F (4) higher-spin theory in AdS 6 at one-loop and other tests of duality, JHEP 11 (2016) 168 [arXiv:1608.07582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    C. Brust and K. Hinterbichler, Partially massless higher-spin theory, JHEP 02 (2017) 086 [arXiv:1610.08510] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Brust and K. Hinterbichler, Partially massless higher-spin theory II: one-loop effective actions, JHEP 01 (2017) 126 [arXiv:1610.08522] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Deser and A. Waldron, Arbitrary spin representations in de Sitter from dS/CFT with applications to dS supergravity, Nucl. Phys. B 662 (2003) 379 [hep-th/0301068] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    P. de Medeiros and C. Hull, Exotic tensor gauge theory and duality, Commun. Math. Phys. 235 (2003) 255 [hep-th/0208155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    E. Joung and K. Mkrtchyan, Weyl action of two-column mixed-symmetry field and its factorization around (A)dS space, JHEP 06 (2016) 135 [arXiv:1604.05330] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    Yu. M. Zinoviev, First order formalism for massive mixed symmetry tensor fields in Minkowski and (A)dS spaces, hep-th/0306292 [INSPIRE].
  54. [54]
    Yu. M. Zinoviev, Toward frame-like gauge invariant formulation for massive mixed symmetry bosonic fields, Nucl. Phys. B 812 (2009) 46 [arXiv:0809.3287] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    Yu. M. Zinoviev, Towards frame-like gauge invariant formulation for massive mixed symmetry bosonic fields II. General Young tableau with two rows, Nucl. Phys. B 826 (2010) 490 [arXiv:0907.2140] [INSPIRE].
  56. [56]
    Yu. M. Zinoviev, Gravitational cubic interactions for a massive mixed symmetry gauge field, Class. Quant. Grav. 29 (2012) 015013 [arXiv:1107.3222] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    M. Flato and C. Fronsdal, One massless particle equals two Dirac singletons: elementary particles in a curved space. 6, Lett. Math. Phys. 2 (1978) 421 [INSPIRE].
  58. [58]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  59. [59]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    C. Iazeolla and P. Sundell, A fiber approach to harmonic analysis of unfolded higher-spin field equations, JHEP 10 (2008) 022 [arXiv:0806.1942] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    E. Sezgin and P. Sundell, Supersymmetric higher spin theories, J. Phys. A 46 (2013) 214022 [arXiv:1208.6019] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  63. [63]
    E. Joung and K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and structure constants, JHEP 05 (2014) 103 [arXiv:1401.7977] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  64. [64]
    R. Raczka, N. Limić and J. Niederle, Discrete degenerate representations of noncompact rotation groups I, J. Math. Phys. 7 (1966) 1861.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys. B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Alg. 49 (1977) 496.MathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    B. Oblak, BMS particles in three dimensions, arXiv:1610.08526 [INSPIRE].
  72. [72]
    W. Fulton and J. Harris, Representation theory: a first course, Grad. Texts Math. 129, Springer New York U.S.A., (1991).Google Scholar
  73. [73]
    T. Hirai, On infinitesimal operators of irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962) 83.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Thomas Basile
    • 1
    • 2
    Email author
  • Xavier Bekaert
    • 1
    • 3
  • Nicolas Boulanger
    • 2
  1. 1.Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis PoissonUniversité François RabelaisToursFrance
  2. 2.Groupe de Mécanique et Gravitation, Service de Physique Théorique et MathématiqueUniversité de Mons — UMONSMonsBelgique
  3. 3.B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic ScienceDaejeonSouth Korea

Personalised recommendations