Skip to main content

The power of perturbation theory

A preprint version of the article is available at arXiv.

Abstract

We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the PicardLefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

References

  1. [1]

    F.J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev. 85 (1952) 631 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    J.J. Loeffel, A. Martin, B. Simon and A.S. Wightman, Pade approximants and the anharmonic oscillator, Phys. Lett. 30B (1969) 656 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    B. Simon and A. Dicke, Coupling constant analyticity for the anharmonic oscillator, Annals Phys. 58 (1970) 76 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    J.P. Eckmann, J. Magnen and R. Sénéor, Decay properties and borel summability for the Schwinger functions in P (Φ)2 theorie, Commun. Math. Phys. 39 (1975) 251

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    J. Magnen and R. Sénéor, Phase Space Cell Expansion and Borel Summability for the Euclidean ϕ 4 in Three-Dimensions Theory, Commun. Math. Phys. 56 (1977) 237 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    J. Ecalle, Les Fonctions Resurgentes, vol. I-III, Publ. Math. Orsay, Orsay France (1981).

  7. [7]

    I. Aniceto, R. Schiappa and M. Vonk, The Resurgence of Instantons in String Theory, Commun. Num. Theor. Phys. 6 (2012) 339 [arXiv:1106.5922] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    M. Mariño, Lectures on non-perturbative effects in large-N gauge theories, matrix models and strings, Fortsch. Phys. 62 (2014) 455 [arXiv:1206.6272] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    D. Dorigoni, An Introduction to Resurgence, Trans-Series and Alien Calculus, arXiv:1411.3585 [INSPIRE].

  10. [10]

    L.N. Lipatov, Divergence of the Perturbation Theory Series and the Quasiclassical Theory, Sov. Phys. JETP 45 (1977) 216 [Zh. Eksp. Teor. Fiz. 72 (1977) 411] [INSPIRE].

  11. [11]

    E. Brézin, J.C. Le Guillou and J. Zinn-Justin, Perturbation Theory at Large Order. 1. The φ 2N Interaction, Phys. Rev. D 15 (1977) 1544 [INSPIRE].

  12. [12]

    E. Brézin, J.C. Le Guillou and J. Zinn-Justin, Perturbation Theory at Large Order. 2. Role of the Vacuum Instability, Phys. Rev. D 15 (1977) 1558 [INSPIRE].

  13. [13]

    E. Brézin, G. Parisi and J. Zinn-Justin, Perturbation Theory at Large Orders for Potential with Degenerate Minima, Phys. Rev. D 16 (1977) 408 [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    E. Witten, A New Look At The Path Integral Of Quantum Mechanics, arXiv:1009.6032 [INSPIRE].

  16. [16]

    D. Harlow, J. Maltz and E. Witten, Analytic Continuation of Liouville Theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    M. Serone, G. Spada and G. Villadoro, Instantons from Perturbation Theory, arXiv:1612.04376 [INSPIRE].

  18. [18]

    Y. Tanizaki and T. Koike, Real-time Feynman path integral with Picard-Lefschetz theory and its applications to quantum tunneling, Annals Phys. 351 (2014) 250 [arXiv:1406.2386] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    G.H. Hardy, Divergent Series, Oxford University Press, Oxford U.K. (1973).

    MATH  Google Scholar 

  20. [20]

    A.D. Sokal, An improvement of Watson’s theorem on Borel summability, J. Math. Phys. 21 (1980) 261 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    A. Vainshtein, Decaying Systems and Divergence of the Series of Perturbation Theory, Novosibirsk Institute of Nuclear Physics Report (1964), published in Proceedings of Continuous advances in QCD Conference, Minneapolis U.S.A. (2002).

  22. [22]

    C.M. Bender and T.T. Wu, Anharmonic oscillator. 2: A Study of perturbation theory in large order, Phys. Rev. D 7 (1973) 1620 [INSPIRE].

  23. [23]

    M.V. Berry and C.J. Howls, Hyperasymptotics for Integrals with Saddles, Proc. Roy. Soc. A 434 (1991) 657.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    C.J. Howls, Hyperasymptotics for Multidimensional Integrals, Exact Remainder Terms and the Global Connection Problem, Proc. Roy. Soc. A 453 (1997) 2271.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 [INSPIRE].

  26. [26]

    J. Milnor, Morse Theory, Princeton University Press, Princeton U.S.A. (1963).

    MATH  Google Scholar 

  27. [27]

    S. Graffi, V. Grecchi and B. Simon, Borel summability: Application to the anharmonic oscillator, Phys. Lett. B 32 (1970) 631 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    Wolfram Research, Inc., Mathematica, Champaign U.S.A. (2016).

  29. [29]

    T. Sulejmanpasic and M. Ünsal, Aspects of Perturbation theory in Quantum Mechanics: The BenderWu Mathematica package, arXiv:1608.08256 [INSPIRE].

  30. [30]

    C.M. Bender and T.T. WU, Large order behavior of Perturbation theory, Phys. Rev. Lett. 27 (1971) 461 [INSPIRE].

  31. [31]

    P. Vieira, Mathematica Summer School on Theoretical Physics, http://msstp.org.

  32. [32]

    J.J. Loeffel, Saclay Report DPh-.T/76-20, unpublished.

  33. [33]

    J.C. Le Guillou and J. Zinn-Justin, Critical Exponents from Field Theory, Phys. Rev. B 21 (1980) 3976 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    U.D. Jentschura and J. Zinn-Justin, Higher order corrections to instantons, J. Phys. A 34 (2001) L253 [math-ph/0103010] [INSPIRE].

  35. [35]

    E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  36. [36]

    I.I. Balitsky and A.V. Yung, Instanton Molecular Vacuum in N = 1 Supersymmetric Quantum Mechanics, Nucl. Phys. B 274 (1986) 475 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    A. Behtash, G.V. Dunne, T. Schäfer, T. Sulejmanpasic and M. Ünsal, Complexified path integrals, exact saddles and supersymmetry, Phys. Rev. Lett. 116 (2016) 011601 [arXiv:1510.00978] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    U.D. Jentschura and J. Zinn-Justin, Instantons in quantum mechanics and resurgent expansions, Phys. Lett. B 596 (2004) 138 [hep-ph/0405279] [INSPIRE].

  39. [39]

    J. Zinn-Justin, Instantons in Quantum Mechanics: Numerical Evidence for a Conjecture, J. Math. Phys. 25 (1984) 549 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, fourth edition, Clarendon Press, Oxford U.K. (2002), chapter 43.

  41. [41]

    H. Taseli, Accurate computation of the energy spectrum for potentials with multiminima, Int. J. Quant. Chem. 46 (1993) 319.

    Article  Google Scholar 

  42. [42]

    P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  43. [43]

    R. Balian, G. Parisi and A. Voros, Discrepancies from asymptotic series and their relation to complex classical trajectories, Phys. Rev. Lett. 41 (1978) 1141 [Erratum ibid. 41 (1978) 1627].

  44. [44]

    A. Voros, The return of the quartic oscillator. The complex WKB method, Ann. Inst. H. Poincaré A 39 (1983) 211.

  45. [45]

    A. Grassi, M. Mariño and S. Zakany, Resumming the string perturbation series, JHEP 05 (2015) 038 [arXiv:1405.4214] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. [46]

    S.-J. Chang, The Existence of a Second Order Phase Transition in the Two-Dimensional ϕ 4 Field Theory, Phys. Rev. D 13 (1976) 2778 [Erratum ibid. D 16 (1977) 1979] [INSPIRE].

  47. [47]

    A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Villadoro.

Additional information

ArXiv ePrint: 1702.04148

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serone, M., Spada, G. & Villadoro, G. The power of perturbation theory. J. High Energ. Phys. 2017, 56 (2017). https://doi.org/10.1007/JHEP05(2017)056

Download citation

Keywords

  • Nonperturbative Effects
  • Field Theories in Lower Dimensions
  • Resummation