Probing lepton flavor violation at the 13 TeV LHC

Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the bounds on tau-mu lepton flavor violation (LFV). Our main focus is on the collider constrains on tau-mu LFV. We use the Type-III Two-Higgs-Doublet-Model (2HDM) as a set up for our study. While the LFV branching fraction of the 125 GeV is well constrained by current LHC searches, the heavier neutral states could have a large branching fraction to tau and muon. We estimate the LHC reach for the 13 TeV center of mass energy with 300 fb−1 luminosity for a neutral boson decaying into a tau and a muon. We identify parts of the LFV parameter space where the searches for heavy scalar and pseudoscalar decaying into a tau and a muon are more sensitive than the similar search for the 125 GeV boson.

Keywords

Beyond Standard Model Higgs Physics 

References

  1. [1]
    R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Banerjee, B. Bhattacherjee, M. Mitra and M. Spannowsky, The lepton flavour violating Higgs decays at the HL-LHC and the ILC, JHEP 07 (2016) 059 [arXiv:1603.05952] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Search for lepton-flavour-violating decays of the Higgs and Z bosons with the ATLAS detector, Eur. Phys. J. C 77 (2017) 70 [arXiv:1604.07730] [INSPIRE].
  4. [4]
    CMS collaboration, Search for lepton-flavour-violating decays of the Higgs boson, Phys. Lett. B 749 (2015) 337 [arXiv:1502.07400] [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for lepton-flavour-violating Hμτ decays of the Higgs boson with the ATLAS detector, JHEP 11 (2015) 211 [arXiv:1508.03372] [INSPIRE].
  6. [6]
    CMS collaboration, Search for lepton flavour violating decays of the Higgs boson in the μ-τ final state at 13 TeV, CMS-PAS-HIG-16-005, CERN, Geneva Switzerland, (2016).
  7. [7]
    J.L. Diaz-Cruz and J.J. Toscano, Lepton flavor violating decays of Higgs bosons beyond the Standard Model, Phys. Rev. D 62 (2000) 116005 [hep-ph/9910233] [INSPIRE].
  8. [8]
    J.L. Diaz-Cruz, D.K. Ghosh and S. Moretti, Lepton flavour violating heavy Higgs decays within the νMSSM and their detection at the LHC, Phys. Lett. B 679 (2009) 376 [arXiv:0809.5158] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [INSPIRE].
  10. [10]
    T. Fukuyama, H. Sugiyama and K. Tsumura, Constraints from muon g − 2 and LFV processes in the Higgs triplet model, JHEP 03 (2010) 044 [arXiv:0909.4943] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    K. Ishiwata and M.B. Wise, Phenomenology of heavy vectorlike leptons, Phys. Rev. D 88 (2013) 055009 [arXiv:1307.1112] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP 05 (2014) 092 [arXiv:1312.5329] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Feruglio, P. Paradisi and A. Pattori, Lepton flavour violation in composite Higgs models, Eur. Phys. J. C 75 (2015) 579 [arXiv:1509.03241] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Lami and P. Roig, Hℓℓin the simplest little Higgs model, Phys. Rev. D 94 (2016) 056001 [arXiv:1603.09663] [INSPIRE].ADSGoogle Scholar
  15. [15]
    B. Yang, J. Han and N. Liu, Lepton flavor violating Higgs boson decay hμτ in the littlest Higgs model with T parity, Phys. Rev. D 95 (2017) 035010 [arXiv:1605.09248] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Sher and K. Thrasher, Flavor changing leptonic decays of heavy Higgs bosons, Phys. Rev. D 93 (2016) 055021 [arXiv:1601.03973] [INSPIRE].ADSGoogle Scholar
  17. [17]
    W. Altmannshofer, J. Eby, S. Gori, M. Lotito, M. Martone and D. Tuckler, Collider signatures of flavorful Higgs bosons, Phys. Rev. D 94 (2016) 115032 [arXiv:1610.02398] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Buschmann, J. Kopp, J. Liu and X.-P. Wang, New signatures of flavor violating Higgs couplings, JHEP 06 (2016) 149 [arXiv:1601.02616] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  21. [21]
    E.A. Paschos, Diagonal neutral currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Georgi and D.V. Nanopoulos, Suppression of flavor changing effects from neutral spinless meson exchange in gauge theories, Phys. Lett. B 82 (1979) 95 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  25. [25]
    P.S. Bhupal Dev and A. Pilaftsis, Maximally symmetric two Higgs doublet model with natural Standard Model alignment, JHEP 12 (2014) 024 [Erratum ibid. 11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
  26. [26]
    A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  28. [28]
    A. Efrati, J.F. Kamenik and Y. Nir, The phenomenology of the di-photon excess and hτμ within 2HDM, arXiv:1606.07082 [INSPIRE].
  29. [29]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  30. [30]
    A. Celis, V. Cirigliano and E. Passemar, Model-discriminating power of lepton flavor violating τ decays, Phys. Rev. D 89 (2014) 095014 [arXiv:1403.5781] [INSPIRE].ADSGoogle Scholar
  31. [31]
    ATLAS collaboration, Search for Higgs bosons decaying into di-muon in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-041, CERN, Geneva Switzerland, (2016).
  32. [32]
    W. Altmannshofer, J. Brod and M. Schmaltz, Experimental constraints on the coupling of the Higgs boson to electrons, JHEP 05 (2015) 125 [arXiv:1503.04830] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y. Soreq, H.X. Zhu and J. Zupan, Light quark Yukawa couplings from Higgs kinematics, JHEP 12 (2016) 045 [arXiv:1606.09621] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Yu, Phenomenology of enhanced light quark Yukawa couplings and the W ± h charge asymmetry, JHEP 02 (2017) 083 [arXiv:1609.06592] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  37. [37]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  38. [38]
    ATLAS collaboration, Z. Marshall, Simulation of pile-up in the ATLAS experiment, J. Phys. Conf. Ser. 513 (2014) 022024 [INSPIRE].
  39. [39]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  40. [40]
    F. Mahmoudi and O. Stål, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].
  41. [41]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  42. [42]
    S. Dawson et al., Working group report: Higgs boson, in Proceedings, Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A., 29 July–6 August 2013 [arXiv:1310.8361] [INSPIRE].
  43. [43]
    G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92 (2015) 033016 [arXiv:1503.00290] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Kopp and M. Nardecchia, Flavor and CP-violation in Higgs decays, JHEP 10 (2014) 156 [arXiv:1406.5303] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Djouadi, The anatomy of electro-weak symmetry breaking II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  46. [46]
    D. Chang, W.S. Hou and W.-Y. Keung, Two loop contributions of flavor changing neutral Higgs bosons to μ, Phys. Rev. D 48 (1993) 217 [hep-ph/9302267] [INSPIRE].
  47. [47]
    A. Celis, V. Cirigliano and E. Passemar, Lepton flavor violation in the Higgs sector and the role of hadronic τ-lepton decays, Phys. Rev. D 89 (2014) 013008 [arXiv:1309.3564] [INSPIRE].ADSGoogle Scholar
  48. [48]
    Belle collaboration, Y. Miyazaki et al., Search for lepton-flavor-violating τ decays into a lepton and a vector meson, Phys. Lett. B 699 (2011) 251 [arXiv:1101.0755] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Department of PhysicsParahyangan Catholic UniversityBandungIndonesia
  2. 2.Department of PhysicsSrinakharinwirot UniversityBangkokThailand

Personalised recommendations