Gravitational wave echoes from macroscopic quantum gravity effects

  • Carlos Barceló
  • Raúl Carballo-RubioEmail author
  • Luis J. Garay
Open Access
Regular Article - Theoretical Physics


New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened rep-etitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.


Black Holes Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Virgo, LIGO Scientific collaboration, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  2. [2]
    Virgo, LIGO Scientific collaboration, B.P. Abbott et al., GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett. 116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
  3. [3]
    Virgo, LIGO Scientific collaboration, B.P. Abbott et al., Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6 (2016) 041015 [arXiv:1606.04856] [INSPIRE].
  4. [4]
    M. Aparicio Resco, A. de la Cruz-Dombriz, F.J. Llanes Estrada and V. Zapatero Castrillo, On neutron stars in f (R) theories: small radii, large masses and large energy emitted in a merger, Phys. Dark Univ. 13 (2016) 147 [arXiv:1602.03880] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    A. Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation, Sitz. König. Preuß. Akad. Wiss. (1916) 688.Google Scholar
  6. [6]
    J. Stachel, The early history of quantum gravity (1916-1940), in Black holes, gravitational radiation and the universe, B.R. Iyer, Springer, Germany (1999).Google Scholar
  7. [7]
    S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  9. [9]
    S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    G.L. Landsberg, Discovering new physics in the decays of black holes, Phys. Rev. Lett. 88 (2002) 181801 [hep-ph/0112061] [INSPIRE].
  11. [11]
    P. Kanti, Black holes in theories with large extra dimensions: a review, Int. J. Mod. Phys. A 19 (2004) 4899 [hep-ph/0402168] [INSPIRE].
  12. [12]
    A. Barrau, C. Feron and J. Grain, Astrophysical production of microscopic black holes in a low Planck-scale world, Astrophys. J. 630 (2005) 1015 [astro-ph/0505436] [INSPIRE].
  13. [13]
    A.M. Green, Primordial black holes: sirens of the early Universe, Fundam. Theor. Phys. 178 (2015) 129 [arXiv:1403.1198].Google Scholar
  14. [14]
    A. Avelino and R.P. Kirshner, The dimensionless age of the Universe: a riddle for our time, Astrophys. J. 828 (2016) 35 [arXiv:1607.00002] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Barcelo, L.J. Garay and G. Jannes, Quantum non-gravity and stellar collapse, Found. Phys. 41 (2011) 1532 [arXiv:1002.4651] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    C. Barcelo, R. Carballo-Rubio, L.J. Garay and G. Jannes, The lifetime problem of evaporating black holes: mutiny or resignation, Class. Quant. Grav. 32 (2015) 035012 [arXiv:1409.1501] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    V. Cardoso, E. Franzin and P. Pani, Is the gravitational-wave ringdown a probe of the event horizon?, Phys. Rev. Lett. 116 (2016) 171101 [arXiv:1602.07309] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    V. Cardoso, S. Hopper, C.F.B. Macedo, C. Palenzuela and P. Pani, Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale, Phys. Rev. D 94 (2016) 084031 [arXiv:1608.08637] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Abedi, H. Dykaar and N. Afshordi, Echoes from the Abyss: Evidence for Planck-scale structure at black hole horizons, arXiv:1612.00266 [INSPIRE].
  20. [20]
    G. Ashton et al., Comments on: “Echoes from the abyss: evidence for Planck-scale structure at black hole horizons”, arXiv:1612.05625 [INSPIRE].
  21. [21]
    J. Abedi, H. Dykaar and N. Afshordi, Echoes from the abyss: the holiday edition!, arXiv:1701.03485 [INSPIRE].
  22. [22]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Barcelo, S. Liberati, S. Sonego and M. Visser, Fate of gravitational collapse in semiclassical gravity, Phys. Rev. D 77 (2008) 044032 [arXiv:0712.1130] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Visser, C. Barcelo, S. Liberati and S. Sonego, Small, dark and heavy: but is it a black hole?, arXiv:0902.0346 [INSPIRE].
  26. [26]
    C. Barceló, S. Liberati, S. Sonego and M. Visser, Black stars, not holes, Sci. Am. 301 (2009) 38.CrossRefGoogle Scholar
  27. [27]
    P.O. Mazur and E. Mottola, Gravitational vacuum condensate stars, Proc. Nat. Acad. Sci. 101 (2004) 9545 [gr-qc/0407075] [INSPIRE].
  28. [28]
    E. Mottola, New horizons in gravity: the trace anomaly, dark energy and condensate stars, Acta Phys. Polon. B 41 (2010) 2031 [arXiv:1008.5006] [INSPIRE].MathSciNetGoogle Scholar
  29. [29]
    T. Vachaspati, D. Stojkovic and L.M. Krauss, Observation of incipient black holes and the information loss problem, Phys. Rev. D 76 (2007) 024005 [gr-qc/0609024] [INSPIRE].
  30. [30]
    T. Vachaspati and D. Stojkovic, Quantum radiation from quantum gravitational collapse, Phys. Lett. B 663 (2008) 107 [gr-qc/0701096] [INSPIRE].
  31. [31]
    A. Saini and D. Stojkovic, Radiation from a collapsing object is manifestly unitary, Phys. Rev. Lett. 114 (2015) 111301 [arXiv:1503.01487] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Kawai, Y. Matsuo and Y. Yokokura, A self-consistent model of the black hole evaporation, Int. J. Mod. Phys. A 28 (2013) 1350050 [arXiv:1302.4733] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Kawai and Y. Yokokura, Phenomenological description of the interior of the Schwarzschild black hole, Int. J. Mod. Phys. A 30 (2015) 1550091 [arXiv:1409.5784] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    H. Kawai and Y. Yokokura, A model of black hole evaporation and 4D weyl anomaly, arXiv:1701.03455 [INSPIRE].
  35. [35]
    P.-M. Ho, The absence of horizon in black-hole formation, Nucl. Phys. B 909 (2016) 394 [arXiv:1510.07157] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    V. Baccetti, R.B. Mann and D.R. Terno, Role of evaporation in gravitational collapse, arXiv:1610.07839 [INSPIRE].
  37. [37]
    E. Greenwood, D.I. Podolsky and G.D. Starkman, Pre-Hawking radiation from a collapsing shell, JCAP 11 (2011) 024 [arXiv:1011.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Bardeen, Non-singular general-relativistic gravitational collapse, in the proceedings of the 5th International Conference on Gravitation and the Theory of Relativity (GR5), Tbilisi, Georgia (1968).Google Scholar
  39. [39]
    S.W. Hawking, Information loss in black holes, Phys. Rev. D 72 (2005) 084013 [hep-th/0507171] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    A. Ori, Firewall or smooth horizon?, Gen. Rel. Grav. 48 (2016) 9 [arXiv:1208.6480] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    I. Dymnikova, Vacuum nonsingular black hole, Gen. Rel. Grav. 24 (1992) 235 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    E. Ayon-Beato and A. Garcia, The Bardeen model as a nonlinear magnetic monopole, Phys. Lett. B 493 (2000) 149 [gr-qc/0009077] [INSPIRE].
  43. [43]
    C. Bambi and L. Modesto, Rotating regular black holes, Phys. Lett. B 721 (2013) 329 [arXiv:1302.6075] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. De Lorenzo, A. Giusti and S. Speziale, Non-singular rotating black hole with a time delay in the center, Gen. Rel. Grav. 48 (2016) 31 [arXiv:1510.08828] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    R. Torres and F. Fayos, On regular rotating black holes, Gen. Rel. Grav. 49 (2017) 2 [arXiv:1611.03654] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    V.P. Frolov, Notes on non-singular models of black holes, Phys. Rev. D 94 (2016) 104056 [arXiv:1609.01758] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Ansoldi, Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources, talk given at the Conference on Black Holes and Naked Singularities, May 10-12, Milan, Italy (2008), arXiv:0802.0330 [INSPIRE].
  48. [48]
    C. Barceló, R. Carballo-Rubio and L.J. Garay, Where does the physics of extreme gravitational collapse reside?, Universe 2 (2016) 7 [arXiv:1510.04957] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S.A. Hayward, Formation and evaporation of regular black holes, Phys. Rev. Lett. 96 (2006) 031103 [gr-qc/0506126] [INSPIRE].
  50. [50]
    V.P. Frolov, Information loss problem and a ‘black hole’ model with a closed apparent horizon, JHEP 05 (2014) 049 [arXiv:1402.5446] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    V.P. Frolov and G.A. Vilkovisky, Spherically symmetric collapse in quantum gravity, Phys. Lett. B 106 (1981) 307 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    P. Hajicek, Quantum theory of gravitational collapse: (Lecture notes on quantum conchology), Lect. Notes Phys. 631 (2003) 255 [gr-qc/0204049].
  54. [54]
    M. Ambrus and P. Hajicek, Quantum superposition principle and gravitational collapse: scattering times for spherical shells, Phys. Rev. D 72 (2005) 064025 [gr-qc/0507017] [INSPIRE].
  55. [55]
    S.B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88 (2013) 064023 [arXiv:1211.7070] [INSPIRE].ADSGoogle Scholar
  56. [56]
    S.B. Giddings and Y. Shi, Effective field theory models for nonviolent information transfer from black holes, Phys. Rev. D 89 (2014) 124032 [arXiv:1310.5700] [INSPIRE].ADSGoogle Scholar
  57. [57]
    S.B. Giddings, Possible observational windows for quantum effects from black holes, Phys. Rev. D 90 (2014) 124033 [arXiv:1406.7001] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S.B. Giddings, Gravitational wave tests of quantum modifications to black hole structure — With post-GW150914 update, Class. Quant. Grav. 33 (2016) 235010 [arXiv:1602.03622] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    C. Rovelli and F. Vidotto, Planck stars, Int. J. Mod. Phys. D 23 (2014) 1442026 [arXiv:1401.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Christodoulou, C. Rovelli, S. Speziale and I. Vilensky, Planck star tunneling time: an astrophysically relevant observable from background-free quantum gravity, Phys. Rev. D 94 (2016) 084035 [arXiv:1605.05268] [INSPIRE].ADSGoogle Scholar
  61. [61]
    C. Barceló, R. Carballo-Rubio and L.J. Garay, Mutiny at the white-hole district, Int. J. Mod. Phys. D 23 (2014) 1442022 [arXiv:1407.1391] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    C. Barceló, R. Carballo-Rubio and L.J. Garay, Black holes turn white fast, otherwise stay black: no half measures, JHEP 01 (2016) 157 [arXiv:1511.00633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    C. Barceló, R. Carballo-Rubio and L.J. Garay, Exponential fading to white of black holes in quantum gravity, Class. Quant. Grav. 34 (2017) 105007 [arXiv:1607.03480] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Barrau, C. Rovelli and F. Vidotto, Fast radio bursts and white hole signals, Phys. Rev. D 90 (2014) 127503 [arXiv:1409.4031] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S.L. Liebling and C. Palenzuela, Dynamical boson stars, Living Rev. Rel. 15 (2012) 6 [arXiv:1202.5809] [INSPIRE].CrossRefzbMATHGoogle Scholar
  66. [66]
    D.D. Ivanenko and D.F. Kurdgelaidze, Hypothesis concerning quark stars, Astrophys. 1 (1965) 251.ADSCrossRefGoogle Scholar
  67. [67]
    N. Itoh, Hydrostatic equilibrium of hypothetical quark stars, Prog. Theor. Phys. 44 (1970) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    G. Chapline, E. Hohlfeld, R.B. Laughlin and D.I. Santiago, Quantum phase transitions and the breakdown of classical general relativity, Int. J. Mod. Phys. A 18 (2003) 3587 [gr-qc/0012094] [INSPIRE].
  69. [69]
    R. Konoplya and A. Zhidenko, Detection of gravitational waves from black holes: is there a window for alternative theories?, Phys. Lett. B 756 (2016) 350 [arXiv:1602.04738] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Visser, The Kerr spacetime: a brief introduction, talk given at Kerr Fest: Black Holes in Astrophysics, General Relativity and Quantum Gravity, August 26-28, Christchurch, New Zealand (2004), arXiv:0706.0622 [INSPIRE].
  71. [71]
    E.T. Akhmedov, D.A. Kalinov and F.K. Popov, Method for distinguishing very compact stellar objects from black holes, Phys. Rev. D 93 (2016) 064006 [arXiv:1601.03894] [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    R. Brustein and A.J.M. Medved, Discovering the interior of black holes, arXiv:1701.07444 [INSPIRE].
  73. [73]
    H. Yang, A. Zimmerman, A. Zenginoglu, F. Zhang, E. Berti and Y. Chen, Quasinormal modes of nearly extremal Kerr spacetimes: spectrum bifurcation and power-law ringdown, Phys. Rev. D 88 (2013) 044047 [arXiv:1307.8086] [INSPIRE].ADSGoogle Scholar
  74. [74]
    M. Visser, Black holes in general relativity, arXiv:0901.4365 [INSPIRE].
  75. [75]
    K.S. Thorne, Probing black holes and relativistic stars with gravitational waves, in the proceedings of Black holes and the structure of the Universe: 6th Conference on Quantum Mechanics of Fundamental Systems, August 18-20, Santiago, Chile (1997), gr-qc/9706079 [INSPIRE].
  76. [76]
    M. Visser and D.L. Wiltshire, Stable gravastars: an alternative to black holes?, Class. Quant. Grav. 21 (2004) 1135 [gr-qc/0310107] [INSPIRE].
  77. [77]
    C. Cattoen, T. Faber and M. Visser, Gravastars must have anisotropic pressures, Class. Quant. Grav. 22 (2005) 4189 [gr-qc/0505137] [INSPIRE].
  78. [78]
    A.E. Broderick and R. Narayan, Where are all the gravastars? Limits upon the gravastar model from accreting black holes, Class. Quant. Grav. 24 (2007) 659 [gr-qc/0701154] [INSPIRE].
  79. [79]
    P. Rocha, R. Chan, M.F.A. da Silva and A. Wang, Stable and ‘bounded excursion’ gravastars and black holes in Einstein’s theory of gravity, JCAP 11 (2008) 010 [arXiv:0809.4879] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    N. Sakai, H. Saida and T. Tamaki, Gravastar shadows, Phys. Rev. D 90 (2014) 104013 [arXiv:1408.6929] [INSPIRE].ADSGoogle Scholar
  81. [81]
    P.O. Mazur and E. Mottola, Surface tension and negative pressure interior of a non-singular ‘black hole’, Class. Quant. Grav. 32 (2015) 215024 [arXiv:1501.03806] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    C.B. M.H. Chirenti and L. Rezzolla, How to tell a gravastar from a black hole, Class. Quant. Grav. 24 (2007) 4191 [arXiv:0706.1513] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    C. Chirenti and L. Rezzolla, Did GW150914 produce a rotating gravastar?, Phys. Rev. D 94 (2016) 084016 [arXiv:1602.08759] [INSPIRE].ADSGoogle Scholar
  84. [84]
    B. Holdom and J. Ren, Not quite a black hole, Phys. Rev. D 95 (2017) 084034 [arXiv:1612.04889] [INSPIRE].Google Scholar
  85. [85]
    A.E. Broderick, A. Loeb and R. Narayan, The event horizon of Sagittarius A*, Astrophys. J. 701 (2009) 1357 [arXiv:0903.1105] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    A.E. Broderick et al., The event horizon of M87, Astrophys. J. 805 (2015) 179 [arXiv:1503.03873] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    M.A. Abramowicz, W. Kluzniak and J.-P. Lasota, No observational proof of the black hole event-horizon, Astron. Astrophys. 396 (2002) L31 [astro-ph/0207270] [INSPIRE].
  88. [88]
    W. Lu, P. Kumar and R. Narayan, Stellar disruption events support the existence of the black hole event horizon, Mon. Not. Roy. Astron. Soc. 468 (2017) 910 [arXiv:1703.00023] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    C. Barcelo, S. Liberati, S. Sonego and M. Visser, Hawking-like radiation does not require a trapped region, Phys. Rev. Lett. 97 (2006) 171301 [gr-qc/0607008] [INSPIRE].
  90. [90]
    C. Barcelo, S. Liberati, S. Sonego and M. Visser, Minimal conditions for the existence of a Hawking-like flux, Phys. Rev. D 83 (2011) 041501 [arXiv:1011.5593] [INSPIRE].ADSGoogle Scholar
  91. [91]
    C. Barcelo, S. Liberati, S. Sonego and M. Visser, Hawking-like radiation from evolving black holes and compact horizonless objects, JHEP 02 (2011) 003 [arXiv:1011.5911] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  92. [92]
    L.C. Barbado, C. Barcelo, L.J. Garay and G. Jannes, The trans-planckian problem as a guiding principle, JHEP 11 (2011) 112 [arXiv:1109.3593] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  93. [93]
    S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  95. [95]
    R. Brustein and A.J.M. Medved, Quantum state of the black hole interior, JHEP 08 (2015) 082 [arXiv:1505.07131] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    R. Brustein and A.J.M. Medved, Falling through the black hole horizon, JHEP 06 (2015) 089 [arXiv:1503.05597] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    P. Chen, Y.C. Ong, D.N. Page, M. Sasaki and D.-h. Yeom, Naked black hole firewalls, Phys. Rev. Lett. 116 (2016) 161304 [arXiv:1511.05695] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    D.-I. Hwang, B.-H. Lee and D.-h. Yeom, Is the firewall consistent?: Gedanken experiments on black hole complementarity and firewall proposal, JCAP 01 (2013) 005 [arXiv:1210.6733] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    W. Kim, B.-H. Lee and D.-H. Yeom, Black hole complementarity and firewall in two dimensions, JHEP 05 (2013) 060 [arXiv:1301.5138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  100. [100]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  101. [101]
    S.D. Mathur and C.J. Plumberg, Correlations in Hawking radiation and the infall problem, JHEP 09 (2011) 093 [arXiv:1101.4899] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  102. [102]
    S.D. Mathur, Black holes and beyond, Annals Phys. 327 (2012) 2760 [arXiv:1205.0776] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  103. [103]
    S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, JHEP 01 (2014) 034 [arXiv:1208.2005] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  104. [104]
    S.D. Mathur and D. Turton, The flaw in the firewall argument, Nucl. Phys. B 884 (2014) 566 [arXiv:1306.5488] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  105. [105]
    S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity: ‘Alice fuzzes but may not even know it!’, JHEP 09 (2013) 012 [arXiv:1210.6996] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Carlos Barceló
    • 1
  • Raúl Carballo-Rubio
    • 2
    Email author
  • Luis J. Garay
    • 3
    • 4
  1. 1.Instituto de Astrofísica de Andalucía (IAA-CSIC)GranadaSpain
  2. 2.The Cosmology & Gravity Group and the Laboratory for Quantum Gravity & Strings, Department of Mathematics & Applied MathematicsUniversity of Cape TownRondeboschSouth Africa
  3. 3.Departamento de Física Teórica IIUniversidad Complutense de MadridMadridSpain
  4. 4.Instituto de Estructura de la Materia (IEM-CSIC)MadridSpain

Personalised recommendations