Some exact Bradlow vortex solutions

  • Sven Bjarke Gudnason
  • Muneto Nitta
Open Access
Regular Article - Theoretical Physics


We consider the Bradlow equation for vortices which was recently found by Manton and find a two-parameter class of analytic solutions in closed form on nontrivial geometries with non-constant curvature. The general solution to our class of metrics is given by a hypergeometric function and the area of the vortex domain by the Gaussian hypergeometric function.


Solitons Monopoles and Instantons Differential and Algebraic Geometry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C.H. Taubes, Arbitrary N : vortex solutions to the first order Landau-Ginzburg equations, Commun. Math. Phys. 72 (1980) 277 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Some exact multi-instanton solutions of classical Yang-Mills theory, Phys. Rev. Lett. 38 (1977) 121 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N.S. Manton and N.A. Rink, Vortices on hyperbolic surfaces, J. Phys. A 43 (2010) 434024 [arXiv:0912.2058] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    R. Jackiw and S.Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett. 64 (1990) 2969 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D 42 (1990) 3500 [Erratum ibid. D 48 (1993) 3929] [INSPIRE].
  6. [6]
    A.D. Popov, Integrable vortex-type equations on the two-sphere, Phys. Rev. D 86 (2012) 105044 [arXiv:1208.3578] [INSPIRE].ADSGoogle Scholar
  7. [7]
    G.V. Dunne, R. Jackiw, S.-Y. Pi and C.A. Trugenberger, Selfdual Chern-Simons solitons and two-dimensional nonlinear equations, Phys. Rev. D 43 (1991) 1332 [Erratum ibid. D 45 (1992) 3012] [INSPIRE].
  8. [8]
    N.S. Manton, Five vortex equations, J. Phys. A 50 (2017) 125403 [arXiv:1612.06710] [INSPIRE].ADSzbMATHGoogle Scholar
  9. [9]
    J. Ambjørn and P. Olesen, Antiscreening of large magnetic fields by vector bosons, Phys. Lett. B 214 (1988) 565 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Ambjørn and P. Olesen, On electroweak magnetism, Nucl. Phys. B 315 (1989) 606 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Olesen, Non-Abelian bootstrap of primordial magnetism, arXiv:1701.00245 [INSPIRE].
  12. [12]
    S.B. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Commun. Math. Phys. 135 (1990) 1 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    Y.-J. Lin, R.L. Compton, K. Jimenez-Garcia, J.V. Porto and I.B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature 462 (2009) 628.ADSCrossRefGoogle Scholar
  14. [14]
    S. Bolognesi, Domain walls and flux tubes, Nucl. Phys. B 730 (2005) 127 [hep-th/0507273] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Department of Physics, and Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan

Personalised recommendations