Higher-spin flat space cosmologies with soft hair

  • Martin Ammon
  • Daniel GrumillerEmail author
  • Stefan Prohazka
  • Max Riegler
  • Raphaela Wutte
Open Access
Regular Article - Theoretical Physics


We present and discuss near horizon boundary conditions for flat space higher-spin gravity in three dimensions. As in related work our boundary conditions ensure regularity of the solutions independently of the charges. The asymptotic symmetry algebra is given by a set of \( \widehat{\mathfrak{u}}(1) \) current algebras. The associated charges generate higher-spin soft hair. We derive the entropy for solutions that are continuously connected to flat space cosmologies and find the same result as in the spin-2 case: the entropy is linear in the spin-2 zero-mode charges and independent from the spin-3 charges. Using twisted Sugawara-like constructions of higher-spin currents we show that our simple result for entropy of higherspin flat space cosmologies coincides precisely with the complicated earlier results expressed in terms of higher-spin zero mode charges.


Chern-Simons Theories Higher Spin Gravity Higher Spin Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  3. [3]
    S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M.R. Gaberdiel and R. Gopakumar, Minimal model holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black holes and singularity resolution in higher spin gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  14. [14]
    C. Bunster, M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Generalized black holes in three-dimensional spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Gutperle, E. Hijano and J. Samani, Lifshitz black holes in higher spin gravity, JHEP 04 (2014) 020 [arXiv:1310.0837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E. Bergshoeff, D. Grumiller, S. Prohazka and J. Rosseel, Three-dimensional spin-3 theories based on general kinematical algebras, JHEP 01 (2017) 114 [arXiv:1612.02277] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Ammon, A. Castro and N. Iqbal, Wilson lines and entanglement entropy in higher spin gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J. de Boer and J.I. Jottar, Entanglement entropy and higher spin holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 gravity in three-dimensional flat space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 [arXiv:1307.5651] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Afshar, S. Detournay, D. Grumiller and B. Oblak, Near-horizon geometry and warped conformal symmetry, JHEP 03 (2016) 187 [arXiv:1512.08233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    D. Grumiller, A. Perez, S. Prohazka, D. Tempo and R. Troncoso, Higher spin black holes with soft hair, JHEP 10 (2016) 119 [arXiv:1607.05360] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    H. Afshar, D. Grumiller, W. Merbis, A. Perez, D. Tempo and R. Troncoso, Soft hairy horizons in three spacetime dimensions, arXiv:1611.09783 [INSPIRE].
  29. [29]
    M.R. Setare and H. Adami, The Heisenberg algebra as near horizon symmetry of the black flower solutions of Chern-Simons-like theories of gravity, Nucl. Phys. B 914 (2017) 220 [arXiv:1606.05260] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    T. Regge and C. Teitelboim, Role of surface integrals in the hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Campoleoni, H.A. Gonzalez, B. Oblak and M. Riegler, Rotating higher spin partition functions and extended BMS symmetries, JHEP 04 (2016) 034 [arXiv:1512.03353] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Campoleoni, H.A. Gonzalez, B. Oblak and M. Riegler, BMS modules in three dimensions, Int. J. Mod. Phys. A 31 (2016) 1650068 [arXiv:1603.03812] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Gary, D. Grumiller, M. Riegler and J. Rosseel, Flat space (higher spin) gravity with chemical potentials, JHEP 01 (2015) 152 [arXiv:1411.3728] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Bagchi, S. Detournay, R. Fareghbal and J. Simón, Holography of 3D flat cosmological horizons, Phys. Rev. Lett. 110 (2013) 141302 [arXiv:1208.4372] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Matulich, A. Perez, D. Tempo and R. Troncoso, Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics, JHEP 05 (2015) 025 [arXiv:1412.1464] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    M. Riegler, Flat space limit of higher-spin Cardy formula, Phys. Rev. D 91 (2015) 024044 [arXiv:1408.6931] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    R. Basu and M. Riegler, Wilson lines and holographic entanglement entropy in galilean conformal field theories, Phys. Rev. D 93 (2016) 045003 [arXiv:1511.08662] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    M. Riegler, How General Is Holography?, Ph.D. thesis, Technische Universität Wien, Wien, Austria (2016), arXiv:1609.02733 [INSPIRE].
  39. [39]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    A. Campoleoni and M. Henneaux, Asymptotic symmetries of three-dimensional higher-spin gravity: the metric approach, JHEP 03 (2015) 143 [arXiv:1412.6774] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  41. [41]
    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional Anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Castro, E. Hijano and A. Lepage-Jutier, Unitarity bounds in AdS 3 higher spin gravity, JHEP 06 (2012) 001 [arXiv:1202.4467] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
  48. [48]
    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    S. Prohazka, J. Salzer and F. Schöller, Linking past and future null infinity in three dimensions, Phys. Rev. D 95 (2017) 086011 [arXiv:1701.06573] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Campoleoni, D. Francia and C. Heissenberg, On higher-spin supertranslations and superrotations, arXiv:1703.01351 [INSPIRE].
  51. [51]
    H. Afshar, D. Grumiller and M.M. Sheikh-Jabbari, Black hole horizon fluffs: near horizon soft hairs as microstates of three dimensional black holes, arXiv:1607.00009 [INSPIRE].
  52. [52]
    M.M. Sheikh-Jabbari and H. Yavartanoo, Horizon fluffs: near horizon soft hairs as microstates of generic AdS 3 black holes, Phys. Rev. D 95 (2017) 044007 [arXiv:1608.01293] [INSPIRE].ADSGoogle Scholar
  53. [53]
    B.L. Feigin, The Lie algebras \( \mathfrak{g}\mathfrak{l}\left(\uplambda \right) \) and cohomologies of Lie algebras of differential operators, Russ. Math. Surv. 43 (1988) 169.CrossRefGoogle Scholar
  54. [54]
    M. Bordemann, J. Hoppe and P. Schaller, Infinite dimensional matrix algebras, Phys. Lett. B 232 (1989) 199 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    E. Bergshoeff, M. Blencowe and K. Stelle, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys. 128 (1990) 213.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    C.N. Pope, L.J. Romans and X. Shen, W and the Racah-Wigner algebra, Nucl. Phys. B 339 (1990) 191 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    E.S. Fradkin and V. Ya. Linetsky, Infinite dimensional generalizations of simple Lie algebras, Mod. Phys. Lett. A 5 (1990) 1967 [INSPIRE].
  58. [58]
    M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, Int. J. Mod. Phys. A 6 (1991) 1115 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    E.S. Fradkin and V. Ya. Linetsky, Supersymmetric Racah basis, family of infinite dimensional superalgebras, SU(∞ + 1|∞) and related 2D models, Mod. Phys. Lett. A 6 (1991) 617 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Theoretisch-Physikalisches InstitutFriedrich-Schiller University of JenaJenaGermany
  2. 2.Institute for Theoretical Physics, TU WienViennaAustria
  3. 3.CMCC-Universidade Federal do ABCSanto AndréBrazil
  4. 4.Université libre de Bruxelles, Boulevard du Triomphe, Campus de la PlaineBruxellesBelgium

Personalised recommendations