A new scalar resonance at 750 GeV: towards a proof of concept in favor of strongly interacting theories

  • Minho Son
  • Alfredo Urbano
Open Access
Regular Article - Theoretical Physics


We interpret the recently observed excess in the diphoton invariant mass as a new spin-0 resonant particle. On theoretical grounds, an interesting question is whether this new scalar resonance belongs to a strongly coupled sector or a well-defined weakly coupled theory. A possible UV-completion that has been widely considered in literature is based on the existence of new vector-like fermions whose loop contributions — Yukawa-coupled to the new resonance — explain the observed signal rate. The large total width preliminarily suggested by data seems to favor a large Yukawa coupling, at the border of a healthy perturbative definition. This potential problem can be fixed by introducing multiple vector-like fermions or large electric charges, bringing back the theory to a weakly coupled regime. However, this solution risks to be only a low-energy mirage: large multiplicity or electric charge can dangerously reintroduce the strong regime by modifying the renormalization group running of the dimensionless couplings. This issue is also tightly related to the (in)stability of the scalar potential. First, we study — in the theoretical setup described above — the parametric behavior of the diphoton signal rate, total width, and one-loop β functions. Then, we numerically solve the renormalization group equations, taking into account the observed diphoton signal rate and total width, to investigate the fate of the weakly coupled theory. We find that — with the only exception of few fine-tuned directions — weakly coupled interpretations of the excess are brought back to a strongly coupled regime if the running is taken into account.


Beyond Standard Model Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081 (2015).
  2. [2]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015).
  3. [3]
    K. Harigaya and Y. Nomura, Composite models for the 750 GeV diphoton excess, Phys. Lett. B 754 (2016) 151 [arXiv:1512.04850] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Mambrini, G. Arcadi and A. Djouadi, The LHC diphoton resonance and dark matter, Phys. Lett. B 755 (2016) 426 [arXiv:1512.04913] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Angelescu, A. Djouadi and G. Moreau, Scenarii for interpretations of the LHC diphoton excess: two Higgs doublets and vector-like quarks and leptons, Phys. Lett. B 756 (2016) 126 [arXiv:1512.04921] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, Phys. Rev. D 93 (2016) 075020 [arXiv:1512.04928] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Buttazzo, A. Greljo and D. Marzocca, Knocking on new physics’ door with a scalar resonance, Eur. Phys. J. C 76 (2016) 116 [arXiv:1512.04929] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Pilaftsis, Diphoton signatures from heavy axion decays at the CERN Large Hadron Collider, Phys. Rev. D 93 (2016) 015017 [arXiv:1512.04931] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750 GeV diphoton resonance, arXiv:1512.05332 [INSPIRE].
  11. [11]
    A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750 GeV singlet, JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Petersson and R. Torre, 750 GeV diphoton excess from the goldstino superpartner, Phys. Rev. Lett. 116 (2016) 151804 [arXiv:1512.05333] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Low, A. Tesi and L.-T. Wang, A pseudoscalar decaying to photon pairs in the early LHC Run 2 data, JHEP 03 (2016) 108 [arXiv:1512.05328] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, Interpretation of the diphoton excess at CMS and ATLAS, Phys. Rev. D 93 (2016) 055032 [arXiv:1512.05439] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Kobakhidze, F. Wang, L. Wu, J.M. Yang and M. Zhang, 750 GeV diphoton resonance in a top and bottom seesaw model, Phys. Lett. B 757 (2016) 92 [arXiv:1512.05585] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P. Cox, A.D. Medina, T.S. Ray and A. Spray, Diphoton excess at 750 GeV from a radion in the bulk-Higgs scenario, arXiv:1512.05618 [INSPIRE].
  17. [17]
    A. Ahmed, B.M. Dillon, B. Grzadkowski, J.F. Gunion and Y. Jiang, Higgs-radion interpretation of 750 GeV di-photon excess at the LHC, arXiv:1512.05771 [INSPIRE].
  18. [18]
    Q.-H. Cao, Y. Liu, K.-P. Xie, B. Yan and D.-M. Zhang, A boost test of anomalous diphoton resonance at the LHC, arXiv:1512.05542 [INSPIRE].
  19. [19]
    D. Bečirević, E. Bertuzzo, O. Sumensari and R. Zukanovich Funchal, Can the new resonance at LHC be a CP-odd Higgs boson?, Phys. Lett. B 757 (2016) 261 [arXiv:1512.05623] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    J.M. No, V. Sanz and J. Setford, See-saw composite Higgses at the LHC: linking naturalness to the 750 GeV di-photon resonance, arXiv:1512.05700 [INSPIRE].
  21. [21]
    S.D. McDermott, P. Meade and H. Ramani, Singlet scalar resonances and the diphoton excess, Phys. Lett. B 755 (2016) 353 [arXiv:1512.05326] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Higaki, K.S. Jeong, N. Kitajima and F. Takahashi, The QCD axion from aligned axions and diphoton excess, Phys. Lett. B 755 (2016) 13 [arXiv:1512.05295] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    W. Chao, R. Huo and J.-H. Yu, The minimal scalar-stealth top interpretation of the diphoton excess, arXiv:1512.05738 [INSPIRE].
  24. [24]
    S. Fichet, G. von Gersdorff and C. Royon, Scattering light by light at 750 GeV at the LHC, Phys. Rev. D 93 (2016) 075031 [arXiv:1512.05751] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S.V. Demidov and D.S. Gorbunov, On sgoldstino interpretation of the diphoton excess, JETP Lett. 103 (2016) 219 [arXiv:1512.05723] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    L. Bian, N. Chen, D. Liu and J. Shu, A hidden confining world on the 750 GeV diphoton excess, arXiv:1512.05759 [INSPIRE].
  27. [27]
    J. Chakrabortty, A. Choudhury, P. Ghosh, S. Mondal and T. Srivastava, Di-photon resonance around 750 GeV: shedding light on the theory underneath, arXiv:1512.05767 [INSPIRE].
  28. [28]
    Y. Bai, J. Berger and R. Lu, 750 GeV dark pion: cousin of a dark G-parity odd WIMP, Phys. Rev. D 93 (2016) 076009 [arXiv:1512.05779] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C. Csáki, J. Hubisz and J. Terning, Minimal model of a diphoton resonance: production without gluon couplings, Phys. Rev. D 93 (2016) 035002 [arXiv:1512.05776] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.S. Kim, J. Reuter, K. Rolbiecki and R. Ruiz de Austri, A resonance without resonance: scrutinizing the diphoton excess at 750 GeV, Phys. Lett. B 755 (2016) 403 [arXiv:1512.06083] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    E. Gabrielli et al., A SUSY inspired simplified model for the 750 GeV diphoton excess, Phys. Lett. B 756 (2016) 36 [arXiv:1512.05961] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    D. Curtin and C.B. Verhaaren, Quirky explanations for the diphoton excess, Phys. Rev. D 93 (2016) 055011 [arXiv:1512.05753] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Berthier, J.M. Cline, W. Shepherd and M. Trott, Effective interpretations of a diphoton excess, JHEP 04 (2016) 084 [arXiv:1512.06799] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.S. Kim, K. Rolbiecki and R. Ruiz de Austri, Model-independent combination of diphoton constraints at 750 GeV, Eur. Phys. J. C 76 (2016) 251 [arXiv:1512.06797] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    X.-J. Bi, Q.-F. Xiang, P.-F. Yin and Z.-H. Yu, The 750 GeV diphoton excess at the LHC and dark matter constraints, Nucl. Phys. B 909 (2016) 43 [arXiv:1512.06787] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    F.P. Huang, C.S. Li, Z.L. Liu and Y. Wang, 750 GeV diphoton excess from cascade decay, arXiv:1512.06732 [INSPIRE].
  37. [37]
    J. Cao et al., Interpreting the 750 GeV diphoton excess by the singlet extension of the Manohar-Wise model, Phys. Lett. B 755 (2016) 456 [arXiv:1512.06728] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.J. Heckman, 750 GeV diphotons from a D3-brane, Nucl. Phys. B 906 (2016) 231 [arXiv:1512.06773] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    O. Antipin, M. Mojaza and F. Sannino, A natural Coleman-Weinberg theory explains the diphoton excess, arXiv:1512.06708 [INSPIRE].
  40. [40]
    R. Ding, L. Huang, T. Li and B. Zhu, Interpreting 750 GeV diphoton excess with R-parity violation supersymmetry, arXiv:1512.06560 [INSPIRE].
  41. [41]
    D. Barducci, A. Goudelis, S. Kulkarni and D. Sengupta, One jet to rule them all: monojet constraints and invisible decays of a 750 GeV diphoton resonance, arXiv:1512.06842 [INSPIRE].
  42. [42]
    W.S. Cho et al., 750 GeV diphoton excess may not imply a 750 GeV resonance, Phys. Rev. Lett. 116 (2016) 151805 [arXiv:1512.06824] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W. Liao and H.-q. Zheng, Scalar resonance at 750 GeV as composite of heavy vector-like fermions, arXiv:1512.06741 [INSPIRE].
  44. [44]
    T.-F. Feng, X.-Q. Li, H.-B. Zhang and S.-M. Zhao, The LHC 750 GeV diphoton excess in supersymmetry with gauged baryon and lepton numbers, arXiv:1512.06696 [INSPIRE].
  45. [45]
    D. Bardhan et al., Radion candidate for the LHC diphoton resonance, arXiv:1512.06674 [INSPIRE].
  46. [46]
    J. Chang, K. Cheung and C.-T. Lu, Interpreting the 750 GeV diphoton resonance using photon jets in hidden-valley-like models, Phys. Rev. D 93 (2016) 075013 [arXiv:1512.06671] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M.-x. Luo, K. Wang, T. Xu, L. Zhang and G. Zhu, Squarkonium, diquarkonium and octetonium at the LHC and their diphoton decays, Phys. Rev. D 93 (2016) 055042 [arXiv:1512.06670] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Chang, A simple U(1) gauge theory explanation of the diphoton excess, Phys. Rev. D 93 (2016) 055016 [arXiv:1512.06426] [INSPIRE].ADSGoogle Scholar
  49. [49]
    C. Han, H.M. Lee, M. Park and V. Sanz, The diphoton resonance as a gravity mediator of dark matter, Phys. Lett. B 755 (2016) 371 [arXiv:1512.06376] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    W. Chao, Symmetries behind the 750 GeV diphoton excess, arXiv:1512.06297 [INSPIRE].
  51. [51]
    J. Bernon and C. Smith, Could the width of the diphoton anomaly signal a three-body decay?, Phys. Lett. B 757 (2016) 148 [arXiv:1512.06113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    L.M. Carpenter, R. Colburn and J. Goodman, Supersoft SUSY models and the 750 GeV diphoton excess, beyond effective operators, arXiv:1512.06107 [INSPIRE].
  53. [53]
    E. Megias, O. Pujolàs and M. Quirós, On dilatons and the LHC diphoton excess, arXiv:1512.06106 [INSPIRE].
  54. [54]
    A. Alves, A.G. Dias and K. Sinha, The 750 GeV S-cion: where else should we look for it?, Phys. Lett. B 757 (2016) 39 [arXiv:1512.06091] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    X.-F. Han and L. Wang, Implication of the 750 GeV diphoton resonance on two-Higgs-doublet model and its extensions with Higgs field, Phys. Rev. D 93 (2016) 055027 [arXiv:1512.06587] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Liu, X.-P. Wang and W. Xue, LHC diphoton excess from colorful resonances, arXiv:1512.07885 [INSPIRE].
  57. [57]
    N. Craig, P. Draper, C. Kilic and S. Thomas, Shedding light on diphoton resonances, arXiv:1512.07733 [INSPIRE].
  58. [58]
    K. Cheung, P. Ko, J.S. Lee, J. Park and P.-Y. Tseng, A Higgcision study on the 750 GeV di-photon resonance and 125 GeV SM Higgs boson with the Higgs-singlet mixing, arXiv:1512.07853 [INSPIRE].
  59. [59]
    K. Das and S.K. Rai, 750 GeV diphoton excess in a U(1) hidden symmetry model, Phys. Rev. D 93 (2016) 095007 [arXiv:1512.07789] [INSPIRE].ADSGoogle Scholar
  60. [60]
    H. Davoudiasl and C. Zhang, 750 GeV messenger of dark conformal symmetry breaking, Phys. Rev. D 93 (2016) 055006 [arXiv:1512.07672] [INSPIRE].ADSGoogle Scholar
  61. [61]
    B.C. Allanach, P.S. Bhupal Dev, S.A. Renner and K. Sakurai, Di-photon excess explained by a resonant sneutrino in R-parity violating supersymmetry, arXiv:1512.07645 [INSPIRE].
  62. [62]
    W. Altmannshofer et al., On the 750 GeV di-photon excess, arXiv:1512.07616 [INSPIRE].
  63. [63]
    M. Cvetič, J. Halverson and P. Langacker, String consistency, heavy exotics and the 750 GeV diphoton excess at the LHC, arXiv:1512.07622 [INSPIRE].
  64. [64]
    K.M. Patel and P. Sharma, Interpreting 750 GeV diphoton excess in SU(5) grand unified theory, Phys. Lett. B 757 (2016) 282 [arXiv:1512.07468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    J. Gu and Z. Liu, Physics implications of the diphoton excess from the perspective of renormalization group flow, Phys. Rev. D 93 (2016) 075006 [arXiv:1512.07624] [INSPIRE].ADSGoogle Scholar
  66. [66]
    S. Chakraborty, A. Chakraborty and S. Raychaudhuri, Diphoton resonance at 750 GeV in the broken MRSSM, arXiv:1512.07527 [INSPIRE].
  67. [67]
    Q.-H. Cao, S.-L. Chen and P.-H. Gu, Strong CP problem, neutrino masses and the 750 GeV diphoton resonance, arXiv:1512.07541 [INSPIRE].
  68. [68]
    W.-C. Huang, Y.-L.S. Tsai and T.-C. Yuan, Gauged two Higgs doublet model confronts the LHC 750 GeV diphoton anomaly, Nucl. Phys. B 909 (2016) 122 [arXiv:1512.07268] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    A. Belyaev et al., Singlets in composite Higgs models in light of the LHC di-photon searches, arXiv:1512.07242 [INSPIRE].
  70. [70]
    G.M. Pelaggi, A. Strumia and E. Vigiani, Trinification can explain the di-photon and di-boson LHC anomalies, JHEP 03 (2016) 025 [arXiv:1512.07225] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A.E.C. Hernández and I. Nisandzic, LHC diphoton 750 GeV resonance as an indication of SU(3)c × SU(3)L × U(1)X gauge symmetry, arXiv:1512.07165 [INSPIRE].
  72. [72]
    C.W. Murphy, Vector leptoquarks and the 750 GeV diphoton resonance at the LHC, Phys. Lett. B 757 (2016) 192 [arXiv:1512.06976] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    J. de Blas, J. Santiago and R. Vega-Morales, New vector bosons and the diphoton excess, arXiv:1512.07229 [INSPIRE].
  74. [74]
    P.S. Bhupal Dev and D. Teresi, Asymmetric dark matter in the sun and the diphoton excess at the LHC, arXiv:1512.07243 [INSPIRE].
  75. [75]
    S.M. Boucenna, S. Morisi and A. Vicente, The LHC diphoton resonance from gauge symmetry, arXiv:1512.06878 [INSPIRE].
  76. [76]
    M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, Tricking Landau-Yang: how to obtain the diphoton excess from a vector resonance, Phys. Lett. B 755 (2016) 145 [arXiv:1512.06833] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M. Bauer and M. Neubert, Flavor anomalies, the diphoton excess and a dark matter candidate, arXiv:1512.06828 [INSPIRE].
  78. [78]
    J.M. Cline and Z. Liu, LHC diphotons from electroweakly pair-produced composite pseudoscalars, arXiv:1512.06827 [INSPIRE].
  79. [79]
    U.K. Dey, S. Mohanty and G. Tomar, 750 GeV resonance in the dark left-right model, Phys. Lett. B 756 (2016) 384 [arXiv:1512.07212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz and T. You, On the interpretation of a possible ∼ 750 GeV particle decaying into γγ, JHEP 03 (2016) 176 [arXiv:1512.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    Y. Nakai, R. Sato and K. Tobioka, Footprints of new strong dynamics via anomaly and the 750 GeV diphoton, Phys. Rev. Lett. 116 (2016) 151802 [arXiv:1512.04924] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    E. Molinaro, F. Sannino and N. Vignaroli, Minimal composite dynamics versus axion origin of the diphoton excess, arXiv:1512.05334 [INSPIRE].
  83. [83]
    M. Backović, A. Mariotti and D. Redigolo, Di-photon excess illuminates dark matter, JHEP 03 (2016) 157 [arXiv:1512.04917] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Di Chiara, L. Marzola and M. Raidal, First interpretation of the 750 GeV di-photon resonance at the LHC, arXiv:1512.04939 [INSPIRE].
  85. [85]
    B. Bellazzini, R. Franceschini, F. Sala and J. Serra, Goldstones in diphotons, JHEP 04 (2016) 072 [arXiv:1512.05330] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  87. [87]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  88. [88]
    CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  89. [89]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].
  90. [90]
    A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    M.-L. Xiao and J.-H. Yu, Stabilizing electroweak vacuum in a vectorlike fermion model, Phys. Rev. D 90 (2014) 014007 [Addendum ibid. D 90 (2014) 019901] [arXiv:1404.0681] [INSPIRE].
  92. [92]
    J.A. Casas, V. Di Clemente, A. Ibarra and M. Quirós, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [INSPIRE].
  93. [93]
    L. Delle Rose, C. Marzo and A. Urbano, On the stability of the electroweak vacuum in the presence of low-scale seesaw models, JHEP 12 (2015) 050 [arXiv:1506.03360] [INSPIRE].CrossRefGoogle Scholar
  94. [94]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    I. Chakraborty and A. Kundu, Diphoton excess at 750 GeV: singlet scalars confront triviality, Phys. Rev. D 93 (2016) 055003 [arXiv:1512.06508] [INSPIRE].ADSGoogle Scholar
  97. [97]
    J. Zhang and S. Zhou, Electroweak vacuum stability and diphoton excess at 750 GeV, Chin. Phys. C 40 (2016) 081001 [arXiv:1512.07889] [INSPIRE].Google Scholar
  98. [98]
    M. Dhuria and G. Goswami, Perturbativity, vacuum stability and inflation in the light of 750 GeV diphoton excess, arXiv:1512.06782 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.CERN, Theory DivisionGenève 23Switzerland
  2. 2.Department of PhysicsKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations