Advertisement

Low energy behaviour of standard model extensions

  • Michele Boggia
  • Raquel Gomez-AmbrosioEmail author
  • Giampiero Passarino
Open Access
Regular Article - Theoretical Physics

Abstract

The integration of heavy scalar fields is discussed in a class of BSM models, containing more that one representation for scalars and with mixing. The interplay between integrating out heavy scalars and the Standard Model decoupling limit is examined. In general, the latter cannot be obtained in terms of only one large scale and can only be achieved by imposing further assumptions on the couplings. Systematic low-energy expansions are derived in the more general, non-decoupling scenario, including mixed tree-loop and mixed heavy-light generated operators. The number of local operators is larger than the one usually reported in the literature.

Keywords

Effective field theories Beyond Standard Model Nonperturbative Effects Renormalization Regularization and Renormalons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable Effects of General New Scalar Particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    C.-W. Chiang and R. Huo, Standard Model Effective Field Theory: Integrating out a Generic Scalar, JHEP 09 (2015) 152 [arXiv:1505.06334] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Egana-Ugrinovic and S. Thomas, Effective Theory of Higgs Sector Vacuum States, arXiv:1512.00144 [INSPIRE].
  4. [4]
    J. Brehmer, A. Freitas, D. Lopez-Val and T. Plehn, Pushing Higgs Effective Theory to its Limits, Phys. Rev. D 93 (2016) 075014 [arXiv:1510.03443] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Biekötter, J. Brehmer and T. Plehn, Pushing Higgs Effective Theory over the Edge, arXiv:1602.05202 [INSPIRE].
  6. [6]
    F. del Aguila, Z. Kunszt and J. Santiago, One-loop effective lagrangians after matching, Eur. Phys. J. C 76 (2016) 244 [arXiv:1602.00126] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M.K. Gaillard, The Effective One Loop Lagrangian With Derivative Couplings, Nucl. Phys. B 268 (1986) 669 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    O. Cheyette, Effective Action for the Standard Model With Large Higgs Mass, Nucl. Phys. B 297 (1988) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Drozd, J. Ellis, J. Quevillon and T. You, The Universal One-Loop Effective Action, JHEP 03 (2016) 180 [arXiv:1512.03003] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R.S. Chivukula, N.D. Christensen and E.H. Simmons, Low-energy effective theory, unitarity and non-decoupling behavior in a model with heavy Higgs-triplet fields, Phys. Rev. D 77 (2008) 035001 [arXiv:0712.0546] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.-C. Chen, S. Dawson and C.B. Jackson, Higgs Triplets, Decoupling and Precision Measurements, Phys. Rev. D 78 (2008) 093001 [arXiv:0809.4185] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.B. Einhorn, D.R.T. Jones and M.J.G. Veltman, Heavy Particles and the rho Parameter in the Standard Model, Nucl. Phys. B 191 (1981) 146 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Fingerprinting nonminimal Higgs sectors, Phys. Rev. D 90 (2014) 075001 [arXiv:1406.3294] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Dittmaier and C. Grosse-Knetter, Deriving nondecoupling effects of heavy fields from the path integral: A Heavy Higgs field in an SU(2) gauge theory, Phys. Rev. D 52 (1995) 7276 [hep-ph/9501285] [INSPIRE].
  18. [18]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    R. Schabinger and J.D. Wells, A Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].
  20. [20]
    G.M. Pruna and T. Robens, Higgs singlet extension parameter space in the light of the LHC discovery, Phys. Rev. D 88 (2013) 115012 [arXiv:1303.1150] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Robens and T. Stefaniak, Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Robens and T. Stefaniak, LHC Benchmark Scenarios for the Real Higgs Singlet Extension of the Standard Model, arXiv:1601.07880 [INSPIRE].
  23. [23]
    M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs Effective Theory: Extended Higgs Sectors, JHEP 10 (2015) 036 [arXiv:1502.07352] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Actis, A. Ferroglia, M. Passera and G. Passarino, Two-Loop Renormalization in the Standard Model. Part I: Prolegomena, Nucl. Phys. B 777 (2007) 1 [hep-ph/0612122] [INSPIRE].
  25. [25]
    R.E. Kallosh and I.V. Tyutin, The Equivalence theorem and gauge invariance in renormalizable theories, Yad. Fiz. 17 (1973) 190 [INSPIRE].MathSciNetGoogle Scholar
  26. [26]
    C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].
  27. [27]
    I.V. Tyutin, Once again on the equivalence theorem, Phys. Atom. Nucl. 65 (2002) 194 [Yad. Fiz. 65 (2002) 201] [hep-th/0001050] [INSPIRE].
  28. [28]
    B.M. Gavela, E.E. Jenkins, A.V. Manohar and L. Merlo, Analysis of General Power Counting Rules in Effective Field Theory, arXiv:1601.07551 [INSPIRE].
  29. [29]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    G. ’t Hooft and M.J.G. Veltman, Combinatorics of gauge fields, Nucl. Phys. B 50 (1972) 318 [INSPIRE].
  31. [31]
    R. Alonso, E.E. Jenkins and A.V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M.B. Gavela, K. Kanshin, P.A.N. Machado and S. Saa, On the renormalization of the electroweak chiral Lagrangian with a Higgs, JHEP 03 (2015) 043 [arXiv:1409.1571] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Buchalla, O. Catà, A. Celis and C. Krause, Fitting Higgs Data with Nonlinear Effective Theory, Eur. Phys. J. C 76 (2016) 233 [arXiv:1511.00988] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K. Yagyu, Studies on Extended Higgs Sectors as a Probe of New Physics Beyond the Standard Model, arXiv:1204.0424 [INSPIRE].
  36. [36]
    G. Bhattacharyya and D. Das, Scalar sector of Two-Higgs-Doublet models: A mini-review, arXiv:1507.06424 [INSPIRE].
  37. [37]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  38. [38]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Michele Boggia
    • 1
  • Raquel Gomez-Ambrosio
    • 2
    Email author
  • Giampiero Passarino
    • 2
  1. 1.Albert-Ludwigs-Universität Freiburg, Physikalisches InstitutFreiburgGermany
  2. 2.Dipartimento di Fisica TeoricaUniversità di Torino, INFN, Sezione di TorinoTorinoItaly

Personalised recommendations