Sensitivity of NEXT-100 to neutrinoless double beta decay

  • The NEXT collaboration
  • J. Martín-Albo
  • J. Muñoz Vidal
  • P. Ferrario
  • M. Nebot-Guinot
  • J. J. Gómez-Cadenas
  • V. Álvarez
  • C. D. R. Azevedo
  • F. I. G. Borges
  • S. Cárcel
  • J. V. Carrión
  • S. Cebrián
  • A. Cervera
  • C. A. N. Conde
  • J. Díaz
  • M. Diesburg
  • R. Esteve
  • L. M. P. Fernandes
  • A. L. Ferreira
  • E. D. C. Freitas
  • A. Goldschmidt
  • D. González-Díaz
  • R. M. Gutiérrez
  • J. Hauptman
  • C. A. O. Henriques
  • J. A. Hernando Morata
  • V. Herrero
  • L. Labarga
  • A. Laing
  • P. Lebrun
  • I. Liubarsky
  • N. López-March
  • D. Lorca
  • M. Losada
  • G. Martínez-Lema
  • A. Martínez
  • F. Monrabal
  • C. M. B. Monteiro
  • F. J. Mora
  • L. M. Moutinho
  • P. Novella
  • D. Nygren
  • B. Palmeiro
  • A. Para
  • M. Querol
  • J. Renner
  • L. Ripoll
  • J. Rodríguez
  • F. P. Santos
  • J. M. F. dos Santos
  • L. Serra
  • D. Shuman
  • A. Simón
  • C. Sofka
  • M. Sorel
  • T. Stiegler
  • J. F. Toledo
  • J. Torrent
  • Z. Tsamalaidze
  • J. F. C. A. Veloso
  • R. Webb
  • J. T. White
  • N. Yahlali
  • H. Yepes-Ramírez
Open Access
Regular Article - Experimental Physics

Abstract

NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0νββ) decay of 136Xe. The detector possesses two features of great value for 0νββ searches: energy resolution better than 1% FWHM at the Q value of 136Xe and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 × 10−4 counts keV−1 kg−1 yr−1. Accordingly, the detector will reach a sensitivity to the 0νββ-decay half-life of 2.8 × 1025 years (90% CL) for an exposure of 100 kg·year, or 6.0 × 1025 years after a run of 3 effective years.

Keywords

Dark Matter and Double Beta Decay (experiments) Rare decay 

References

  1. [1]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North-Holland Publishing Company, Amsterdam The Netherlands (1979), pg. 315.Google Scholar
  4. [4]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theories and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95.Google Scholar
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.F. King, Neutrinos, flavour and CP violation, PoS(PLANCK 2015)068.
  7. [7]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.J. Gómez-Cadenas, J. Martín-Albo, M. Mezzetto, F. Monrabal and M. Sorel, The Search for neutrinoless double beta decay, Riv. Nuovo Cim. 35 (2012) 29 [arXiv:1109.5515] [INSPIRE].Google Scholar
  9. [9]
    A. Giuliani and A. Poves, Neutrinoless double-beta decay, Adv. High Energy Phys. 2012 (2012) 857016.Google Scholar
  10. [10]
    S.R. Elliott, Recent Progress in Double Beta Decay, Mod. Phys. Lett. A 27 (2012) 1230009 [arXiv:1203.1070] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    O. Cremonesi and M. Pavan, Challenges in Double Beta Decay, Adv. High Energy Phys. 2014 (2014) 951432 [arXiv:1310.4692] [INSPIRE].
  12. [12]
    NEXT collaboration, V. Álvarez et al., Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, Nucl. Instrum. Meth. A 708 (2013) 101 [arXiv:1211.4474] [INSPIRE].
  13. [13]
    NEXT collaboration, D. Lorca et al., Characterisation of NEXT-DEMO using xenon K α X-rays, 2014 JINST 9 P10007 [arXiv:1407.3966] [INSPIRE].
  14. [14]
    NEXT collaboration, V. Álvarez et al., Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [arXiv:1306.0471] [INSPIRE].
  15. [15]
    NEXT collaboration, P. Ferrario et al., First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP 01 (2016) 104 [arXiv:1507.05902] [INSPIRE].
  16. [16]
    G. Feinberg and M. Goldhaber, Microscopic tests of symmetry principles, Proc. Natl. Acad. Sci. USA 45 (1959) 1301.ADSCrossRefMATHGoogle Scholar
  17. [17]
    B. Pontecorvo, Superweak interactions and double beta decay, Phys. Lett. B 26 (1968) 630 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  19. [19]
    R.N. Mohapatra, New Contributions to Neutrinoless Double beta Decay in Supersymmetric Theories, Phys. Rev. D 34 (1986) 3457 [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, New supersymmetric contributions to neutrinoless double beta decay, Phys. Lett. B 352 (1995) 1 [hep-ph/9502315] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Racah, On the symmetry of particle and antiparticle, Nuovo Cim. 14 (1937) 322 [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    W.H. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    M. Wang et al., The Ame2012 atomic mass evaluation, Chin. Phys. C 36 (2012) 1603.ADSCrossRefGoogle Scholar
  25. [25]
    M. Redshaw, E. Wingfield, J. McDaniel and E.G. Myers, Mass and double-beta-decay Q value of Xe-136, Phys. Rev. Lett. 98 (2007) 053003 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P.M. McCowan and R.C. Barber, Q value for the double-beta decay of Xe-136, Phys. Rev. C 82 (2010) 024603 [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Kotila and F. Iachello, Phase space factors for double-β decay, Phys. Rev. C 85 (2012) 034316 [arXiv:1209.5722] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Mirea, T. Pahomi and S. Stoica, Phase Space Factors for Double Beta Decay: an up-date, arXiv:1411.5506 [INSPIRE].
  29. [29]
    J. Menendez, A. Poves, E. Caurier and F. Nowacki, Disassembling the Nuclear Matrix Elements of the Neutrinoless beta beta Decay, Nucl. Phys. A 818 (2009) 139 [arXiv:0801.3760] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Barea, J. Kotila and F. Iachello, 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration, Phys. Rev. C 91 (2015) 034304 [arXiv:1506.08530] [INSPIRE].ADSGoogle Scholar
  31. [31]
    F. Šimkovic, V. Rodin, A. Faessler and P. Vogel, 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation and isospin symmetry restoration, Phys. Rev. C 87 (2013) 045501 [arXiv:1302.1509] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Hyvärinen and J. Suhonen, Nuclear matrix elements forββ decays with light or heavy Majorana-neutrino exchange, Phys. Rev. C 91 (2015) 024613 [INSPIRE].ADSGoogle Scholar
  33. [33]
    N. López Vaquero, T.R. Rodríguez and J.L. Egido, Shape and pairing fluctuations effects on neutrinoless double beta decay nuclear matrix elements, Phys. Rev. Lett. 111 (2013) 142501 [arXiv:1401.0650] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    J.M. Yao, L.S. Song, K. Hagino, P. Ring and J. Meng, Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory, Phys. Rev. C 91 (2015) 024316 [arXiv:1410.6326] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A.S. Barabash, Average and recommended half-life values for two neutrino double beta decay, Nucl. Phys. A 935 (2015) 52 [arXiv:1501.05133] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Barea, J. Kotila and F. Iachello, Nuclear matrix elements for double-β decay, Phys. Rev. C 87 (2013) 014315 [arXiv:1301.4203] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Engel, F. Simkovic and P. Vogel, Chiral Two-Body Currents and Neutrinoless Double-Beta Decay in the QRPA, Phys. Rev. C 89 (2014) 064308 [arXiv:1403.7860] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Engel, Uncertainties in nuclear matrix elements for neutrinoless double-beta decay, J. Phys. G 42 (2015) 034017 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, arXiv:1601.07512 [INSPIRE].
  40. [40]
    M.C. Gonzalez-García, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  42. [42]
    GERDA collaboration, M. Agostini et al., Results on Neutrinoless Double-β Decay of 76 Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013) 122503 [arXiv:1307.4720] [INSPIRE].
  43. [43]
    EXO-200 collaboration, J.B. Albert et al., Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510 (2014) 229 [arXiv:1402.6956] [INSPIRE].
  44. [44]
    KamLAND-Zen collaboration, K. Asakura et al., Results from KamLAND-Zen, AIP Conf. Proc. 1666 (2015) 170003 [arXiv:1409.0077] [INSPIRE].
  45. [45]
    G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.J. Gomez-Cadenas et al., Sense and sensitivity of double beta decay experiments, JCAP 06 (2011) 007 [arXiv:1010.5112] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. Nygren, High-pressure xenon gas electroluminescent TPC for 0nu beta beta-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Lung et al., Characterization of the Hamamatsu R11410-10 3-Inch Photomultiplier Tube for Liquid Xenon Dark Matter Direct Detection Experiments, Nucl. Instrum. Meth. A 696 (2012) 32 [arXiv:1202.2628] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  50. [50]
    S.-C. Wu, Nuclear data sheets for A = 214, Nucl. Data Sheets 110 (2009) 681.ADSCrossRefGoogle Scholar
  51. [51]
    M.J. Martin, Nuclear data sheets for A = 208, Nucl. Data Sheets 108 (2007) 1583.ADSCrossRefGoogle Scholar
  52. [52]
    V. Álvarez et al., Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements, 2013 JINST 8 T01002 [arXiv:1211.3961] [INSPIRE].
  53. [53]
    NEXT collaboration, T. Dafni et al., Results of the material screening program of the NEXT experiment, arXiv:1411.1222 [INSPIRE].
  54. [54]
    NEXT collaboration, S. Cebrián et al., Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment, 2015 JINST 10 P05006 [arXiv:1411.1433] [INSPIRE].
  55. [55]
    S. Cebrián et al., Radon and material radiopurity assessment for the NEXT double beta decay experiment, AIP Conf. Proc. 1672 (2015) 060002 [arXiv:1505.07052] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    D.S. Leonard et al., Systematic study of trace radioactive impurities in candidate construction materials for EXO-200, Nucl. Instrum. Meth. A 591 (2008) 490 [arXiv:0709.4524] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Auger et al., The EXO-200 detector, part I: Detector design and construction, 2012 JINST 7 P05010 [arXiv:1202.2192] [INSPIRE].
  58. [58]
    A. Bettini, The Canfranc Underground Laboratory (LSC), Eur. Phys. J. Plus 127 (2012) 112 [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    I. Bandac, Gamma flux at the LSC, private communication (2013).Google Scholar
  60. [60]
    I. Bandac, Radón y radiación ambiental en el Laboratorio Subterráneo de Canfranc (LSC), Radioprotección XXI (2014) 24.Google Scholar
  61. [61]
    NEMO collaboration, A. Nachab, Radon reduction and radon monitoring in the NEMO experiment, AIP Conf. Proc. 897 (2007) 35 [INSPIRE].
  62. [62]
    DarkSide collaboration, M. Bossa, DarkSide-50, a background free experiment for dark matter searches, 2014 JINST 9 C01034 [INSPIRE].
  63. [63]
    NEXT collaboration, V. Alvarez et al., Ionization and scintillation response of high-pressure xenon gas to alpha particles, 2013 JINST 8 P05025 [arXiv:1211.4508] [INSPIRE].
  64. [64]
    NEXT collaboration, L. Serra et al., An improved measurement of electron-ion recombination in high-pressure xenon gas, 2015 JINST 10 P03025 [arXiv:1412.3573] [INSPIRE].
  65. [65]
    EXO-200 collaboration, J.B. Albert et al., Improved measurement of the 2νββ half-life of 136 Xe with the EXO-200 detector, Phys. Rev. C 89 (2014) 015502 [arXiv:1306.6106] [INSPIRE].
  66. [66]
    J.B. Albert et al., Investigation of radioactivity-induced backgrounds in EXO-200, Phys. Rev. C 92 (2015) 015503 [arXiv:1503.06241] [INSPIRE].ADSGoogle Scholar
  67. [67]
    G. Luzón et al., Characterization of the Canfranc Underground Laboratory: Status and future plans, in Proceedings of the 6th International Workshop on the Identification of Dark Matter (IDM), Rhodes Greece (2006), pg. 514.Google Scholar
  68. [68]
    P. Lipari and T. Stanev, Propagation of multi-TeV muons, Phys. Rev. D 44 (1991) 3543 [INSPIRE].ADSGoogle Scholar
  69. [69]
    E. Browne and J.K. Tuli, Nuclear data sheets for A = 137, Nucl. Data Sheets 108 (2007) 2173.ADSCrossRefGoogle Scholar
  70. [70]
    J. Martín-Albo, The NEXT experiment for neutrinoless double beta decay searches, Ph.D. Thesis, Universitat de València, València Spain (2015).Google Scholar
  71. [71]
    GEANT4 collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
  72. [72]
    O.A. Ponkratenko, V.I. Tretyak and Yu. G. Zdesenko, The Event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei, Phys. Atom. Nucl. 63 (2000) 1282 [nucl-ex/0104018] [INSPIRE].
  73. [73]
    T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to algorithms, third edition, MIT Press, Cambridge U.S.A. (2009).Google Scholar
  74. [74]
    J. Neyman and E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Phil. Trans. Roy. Soc. Lond. A 231 (1933) 289.ADSCrossRefMATHGoogle Scholar
  75. [75]
    NEMO-3 collaboration, R. Arnold et al., Search for neutrinoless double-beta decay of 100 M o with the NEMO-3 detector, Phys. Rev. D 89 (2014) 111101 [arXiv:1311.5695] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • The NEXT collaboration
  • J. Martín-Albo
    • 1
    • 18
  • J. Muñoz Vidal
    • 1
  • P. Ferrario
    • 1
  • M. Nebot-Guinot
    • 1
  • J. J. Gómez-Cadenas
    • 1
  • V. Álvarez
    • 1
  • C. D. R. Azevedo
    • 2
  • F. I. G. Borges
    • 3
  • S. Cárcel
    • 1
  • J. V. Carrión
    • 1
  • S. Cebrián
    • 4
  • A. Cervera
    • 1
  • C. A. N. Conde
    • 3
  • J. Díaz
    • 1
  • M. Diesburg
    • 5
  • R. Esteve
    • 6
  • L. M. P. Fernandes
    • 7
  • A. L. Ferreira
    • 2
  • E. D. C. Freitas
    • 7
  • A. Goldschmidt
    • 8
  • D. González-Díaz
    • 9
  • R. M. Gutiérrez
    • 10
  • J. Hauptman
    • 11
  • C. A. O. Henriques
    • 7
  • J. A. Hernando Morata
    • 12
  • V. Herrero
    • 6
  • L. Labarga
    • 13
  • A. Laing
    • 1
  • P. Lebrun
    • 5
  • I. Liubarsky
    • 1
  • N. López-March
    • 1
  • D. Lorca
    • 1
  • M. Losada
    • 10
  • G. Martínez-Lema
    • 12
  • A. Martínez
    • 1
  • F. Monrabal
    • 14
  • C. M. B. Monteiro
    • 7
  • F. J. Mora
    • 6
  • L. M. Moutinho
    • 2
  • P. Novella
    • 1
  • D. Nygren
    • 14
  • B. Palmeiro
    • 1
  • A. Para
    • 5
  • M. Querol
    • 1
  • J. Renner
    • 1
  • L. Ripoll
    • 15
  • J. Rodríguez
    • 1
  • F. P. Santos
    • 3
  • J. M. F. dos Santos
    • 7
  • L. Serra
    • 1
  • D. Shuman
    • 14
  • A. Simón
    • 1
  • C. Sofka
    • 16
  • M. Sorel
    • 1
  • T. Stiegler
    • 16
  • J. F. Toledo
    • 6
  • J. Torrent
    • 15
  • Z. Tsamalaidze
    • 17
  • J. F. C. A. Veloso
    • 2
  • R. Webb
    • 16
  • J. T. White
    • 16
  • N. Yahlali
    • 1
  • H. Yepes-Ramírez
    • 10
  1. 1.Instituto de Física Corpuscular (IFIC), CSIC & Universitat de ValènciaPaternaSpain
  2. 2.Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N) Universidade de AveiroAveiroPortugal
  3. 3.LIP, Departamento de FísicaUniversidade de CoimbraCoimbraPortugal
  4. 4.Laboratorio de Física Nuclear y AstropartículasUniversidad de ZaragozaZaragozaSpain
  5. 5.Fermi National Accelerator LaboratoryBataviaU.S.A.
  6. 6.Instituto de Instrumentación para Imagen Molecular (I3M)Universitat Politècnica de ValènciaValenciaSpain
  7. 7.LIBPhys, Physics DepartmentUniversity of CoimbraCoimbraPortugal
  8. 8.Lawrence Berkeley National Laboratory (LBNL)BerkeleyU.S.A.
  9. 9.European Organization for Nuclear Research (CERN)Geneva 23Switzerland
  10. 10.Centro de Investigación en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño Sede CircunvalarBogotáColombia
  11. 11.Department of Physics and AstronomyIowa State UniversityAmesU.S.A.
  12. 12.Instituto Gallego de Física de Altas Energías, Univ. de Santiago de CompostelaSantiago de CompostelaSpain
  13. 13.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain
  14. 14.Department of PhysicsUniversity of Texas at ArlingtonArlingtonU.S.A.
  15. 15.Escola Politècnica SuperiorUniversitat de GironaGironaSpain
  16. 16.Department of Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  17. 17.Joint Institute for Nuclear Research (JINR)DubnaRussia
  18. 18.University of OxfordOxfordUnited Kingdom

Personalised recommendations