Advertisement

Z/γ plus multiple hard jets in high energy collisions

  • Jeppe R. Andersen
  • Jack J. Medley
  • Jennifer M. Smillie
Open Access
Regular Article - Theoretical Physics

Abstract

We present a description of the production of di-lepton pair production (through Z boson and virtual photon) in association with at least two jets. This calculation adds to the fixed-order accuracy the dominant logarithms in the limit of large partonic centre-of-mass energy to all orders in the strong coupling αs. This is achieved within the framework of High Energy Jets. This calculation is made possible by extending the high energy treatment to take into account the multiple t-channel exchanges arising from Z and γ-emissions off several quark lines. The correct description of the interference effects from the various t-channel exchanges requires an extension of the subtraction terms in the all-order calculation. We describe this construction and compare the resulting predictions to a number of recent analyses of LHC data. The description of a wide range of observables is good, and, as expected, stands out from other approaches in particular in the regions of large dijet invariant mass and large dijet rapidity spans.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Jet production rates in association with W and Z bosons in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2012) 010 [arXiv:1110.3226] [INSPIRE].
  2. [2]
    ATLAS collaboration, Measurement of the production cross section for Z/γ in association with jets in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 032009 [arXiv:1111.2690] [INSPIRE].
  3. [3]
    CMS collaboration, Event shapes and azimuthal correlations in Z + jets events in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 722 (2013) 238 [arXiv:1301.1646] [INSPIRE].
  4. [4]
    ATLAS collaboration, Measurement of the production cross section of jets in association with a Z boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 07 (2013) 032 [arXiv:1304.7098] [INSPIRE].
  5. [5]
    CMS collaboration, Measurements of jet multiplicity and differential production cross sections of Z + jets events in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 91 (2015) 052008 [arXiv:1408.3104] [INSPIRE].
  6. [6]
    ATLAS collaboration, A measurement of the ratio of the production cross sections for W and Z bosons in association with jets with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3168 [arXiv:1408.6510] [INSPIRE].
  7. [7]
    CMS collaboration, Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 66 [arXiv:1410.3153] [INSPIRE].
  8. [8]
    H. Ita, Z. Bern, L.J. Dixon, F. Febres Cordero, D.A. Kosower and D. Maître, Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  10. [10]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
  11. [11]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber and C.D. White, The MCaNLO 4.0 event generator, arXiv:1010.0819 [INSPIRE].
  14. [14]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E. Re, NLO corrections merged with parton showers for Z + 2 jets production using the POWHEG method, JHEP 10 (2012) 031 [arXiv:1204.5433] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.M. Campbell, R.K. Ellis, P. Nason and G. Zanderighi, W and Z bosons in association with two jets using the POWHEG method, JHEP 08 (2013) 005 [arXiv:1303.5447] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, W + n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett. 110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, aMC@NLO predictions for W jj production at the Tevatron, JHEP 02 (2012) 048 [arXiv:1110.5502] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Höche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    R. Frederix, S. Frixione, A. Papaefstathiou, S. Prestel and P. Torrielli, A study of multi-jet production in association with an electroweak vector boson, JHEP 02 (2016) 131 [arXiv:1511.00847] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.R. Andersen and J.M. Smillie, Constructing all-order corrections to multi-jet rates, JHEP 01 (2010) 039 [arXiv:0908.2786] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    J.R. Andersen and J.M. Smillie, The factorisation of the t-channel pole in quark-gluon scattering, Phys. Rev. D 81 (2010) 114021 [arXiv:0910.5113] [INSPIRE].ADSGoogle Scholar
  23. [23]
    D0 collaboration, V.M. Abazov et al., Studies of W boson plus jets production in pp collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 88 (2013) 092001 [arXiv:1302.6508] [INSPIRE].
  24. [24]
    ATLAS collaboration, Measurement of dijet production with a veto on additional central jet activity in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2011) 053 [arXiv:1107.1641] [INSPIRE].
  25. [25]
    CMS collaboration, Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 036 [arXiv:1202.0704] [INSPIRE].
  26. [26]
    CMS collaboration, Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 2216 [arXiv:1204.0696] [INSPIRE].
  27. [27]
    ATLAS collaboration, Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 74 (2014) 3117 [arXiv:1407.5756] [INSPIRE].
  28. [28]
    ATLAS collaboration, Measurements of the W production cross sections in association with jets with the ATLAS detector, Eur. Phys. J. C 75 (2015) 82 [arXiv:1409.8639] [INSPIRE].
  29. [29]
    ATLAS collaboration, Measurement of four-jet differential cross sections in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, JHEP 12 (2015) 105 [arXiv:1509.07335] [INSPIRE].
  30. [30]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [INSPIRE].
  31. [31]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].
  32. [32]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Lavesson and L. Lönnblad, W + jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].
  34. [34]
    H. Jung and G.P. Salam, Hadronic final state predictions from CCFM: the hadron level Monte Carlo generator CASCADE, Eur. Phys. J. C 19 (2001) 351 [hep-ph/0012143] [INSPIRE].
  35. [35]
    H. Jung et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70 (2010) 1237 [arXiv:1008.0152] [INSPIRE].
  36. [36]
    D. Colferai, F. Schwennsen, L. Szymanowski and S. Wallon, Mueller Navelet jets at LHC — complete NLL BFKL calculation, JHEP 12 (2010) 026 [arXiv:1002.1365] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F. Caporale, D. Yu. Ivanov, B. Murdaca and A. Papa, Mueller-Navelet small-cone jets at LHC in next-to-leading BFKL, Nucl. Phys. B 877 (2013) 73 [arXiv:1211.7225] [INSPIRE].
  38. [38]
    B. Ducloue, L. Szymanowski and S. Wallon, Mueller-Navelet jets at LHC: the first complete NLL BFKL study, PoS(QNP2012) 165 [arXiv:1208.6111] [INSPIRE].
  39. [39]
    J.R. Andersen, L. Lönnblad and J.M. Smillie, A parton shower for high energy jets, JHEP 07 (2011) 110 [arXiv:1104.1316] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    V. Del Duca, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit, Phys. Rev. D 52 (1995) 1527 [hep-ph/9503340] [INSPIRE].
  41. [41]
    J.R. Christiansen and T. Sjöstrand, Weak gauge boson radiation in parton showers, JHEP 04 (2014) 115 [arXiv:1401.5238] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    F. Krauss, P. Petrov, M. Schoenherr and M. Spannowsky, Measuring collinear W emissions inside jets, Phys. Rev. D 89 (2014) 114006 [arXiv:1403.4788] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J.R. Christiansen and S. Prestel, Merging weak and QCD showers with matrix elements, Eur. Phys. J. C 76 (2016) 39 [arXiv:1510.01517] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.R. Andersen, V. Del Duca and C.D. White, Higgs boson production in association with multiple hard jets, JHEP 02 (2009) 015 [arXiv:0808.3696] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.R. Andersen and C.D. White, A new framework for multijet predictions and its application to Higgs boson production at the LHC, Phys. Rev. D 78 (2008) 051501 [arXiv:0802.2858] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.R. Andersen and J.M. Smillie, Multiple jets at the LHC with high energy jets, JHEP 06 (2011) 010 [arXiv:1101.5394] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].
  49. [49]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  50. [50]
    C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ + 3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].ADSGoogle Scholar
  53. [53]
    C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Jeppe R. Andersen
    • 1
  • Jack J. Medley
    • 2
  • Jennifer M. Smillie
    • 2
  1. 1.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.
  2. 2.Higgs Centre for Theoretical PhysicsUniversity of EdinburghEdinburghU.K.

Personalised recommendations