Advertisement

A computer test of holographic flavour dynamics

  • Veselin G. FilevEmail author
  • Denjoe O’Connor
Open Access
Regular Article - Theoretical Physics

Abstract

We perform computer simulations of the Berkooz-Douglas (BD) matrix model, holographically dual to the D0/D4-brane intersection. We generate the fundamental condensate versus bare mass curve of the theory both holographically and from simulations of the BD model. Our studies show excellent agreement of the two approaches in the deconfined phase of the theory and significant deviations in the confined phase. We argue the discrepancy in the confined phase is explained by the embedding of the D4-brane which yields stronger α′ corrections to the condensate in this phase.

Keywords

AdS-CFT Correspondence Matrix Models D-branes Lattice Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. Babington et al., Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Holographic meson melting, JHEP 04 (2007) 031 [hep-th/0612169] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Quarks in an external electric field in finite temperature large-N gauge theory, JHEP 08 (2008) 092 [arXiv:0709.1554] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with flavour in electric and magnetic Kalb-Ramond fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Erdmenger, M. Kaminski and F. Rust, Holographic vector mesons from spectral functions at finite baryon or isospin density, Phys. Rev. D 77 (2008) 046005 [arXiv:0710.0334] [INSPIRE].ADSGoogle Scholar
  12. [12]
    N. Evans and E. Threlfall, Chemical potential in the gravity dual of a 2 + 1 dimensional system, Phys. Rev. D 79 (2009) 066008 [arXiv:0812.3273] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    A. O’Bannon, Toward a holographic model of superconducting fermions, JHEP 01 (2009) 074 [arXiv:0811.0198] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Karch, B. Robinson and C.F. Uhlemann, Precision test of gauge-gravity duality with flavor, Phys. Rev. Lett. 115 (2015) 261601 [arXiv:1509.00013] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Catterall, Lattice formulation of N = 4 super Yang-Mills theory, JHEP 06 (2005) 027 [hep-lat/0503036] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    D.B. Kaplan and M. Ünsal, A euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP 09 (2005) 042 [hep-lat/0503039] [INSPIRE].
  17. [17]
    K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett. 100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev. D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Catterall and T. Wiseman, Extracting black hole physics from the lattice, JHEP 04 (2010) 077 [arXiv:0909.4947] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science 344 (2014) 882 [arXiv:1311.5607] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Kadoh and S. Kamata, Gauge/gravity duality and lattice simulations of one dimensional SYM with sixteen supercharges, arXiv:1503.08499 [INSPIRE].
  23. [23]
    V.G. Filev and D. O’Connor, The BFSS model on the lattice, arXiv:1506.01366 [INSPIRE].
  24. [24]
    A. Joseph, Review of lattice supersymmetry and gauge-gravity duality, Int. J. Mod. Phys. A 30 (2015) 1530054 [arXiv:1509.01440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    I. Kirsch, Generalizations of the AdS/CFT correspondence, Fortsch. Phys. 52 (2004) 727 [hep-th/0406274].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, A topology-changing phase transition and the dynamics of flavour, Phys. Rev. D 77 (2008) 066004 [hep-th/0605088] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Berkooz and M.R. Douglas, Five-branes in M(atrix) theory, Phys. Lett. B 395 (1997) 196 [hep-th/9610236] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Van Raamsdonk, Open dielectric branes, JHEP 02 (2002) 001 [hep-th/0112081] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
  31. [31]
    M.A. Clark, A.D. Kennedy and Z. Sroczynski, Exact 2 + 1 flavour RHMC simulations, Nucl. Phys. Proc. Suppl. 140 (2005) 835 [hep-lat/0409133] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Benincasa, A note on holographic renormalization of probe D-branes, arXiv:0903.4356 [INSPIRE].
  33. [33]
    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    N. Kawahara, J. Nishimura and S. Takeuchi, High temperature expansion in supersymmetric matrix quantum mechanics, JHEP 12 (2007) 103 [arXiv:0710.2188] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Buchel, J.T. Liu, A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Buchel, Resolving disagreement for η s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    B. Hassanain and M. Schvellinger, Plasma conductivity at finite coupling, JHEP 01 (2012) 114 [arXiv:1108.6306] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    B. Hassanain and M. Schvellinger, Diagnostics of plasma photoemission at strong coupling, Phys. Rev. D 85 (2012) 086007 [arXiv:1110.0526] [INSPIRE].ADSzbMATHGoogle Scholar
  40. [40]
    D.-L. Yang and B. Müller, Collective flow of photons in strongly coupled gauge theories, arXiv:1507.04232 [INSPIRE].
  41. [41]
    S. Grozdanov and A.O. Starinets, On the universal identity in second order hydrodynamics, JHEP 03 (2015) 007 [arXiv:1412.5685] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S. Waeber, A. Schäfer, A. Vuorinen and L.G. Yaffe, Finite coupling corrections to holographic predictions for hot QCD, JHEP 11 (2015) 087 [arXiv:1509.02983] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Y. Asano, V. Filev, S. Kovacik and D. O’Connor, The flavoured BFSS model at high temperature, arXiv:1605.05597.

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 4Ireland

Personalised recommendations