Advertisement

Analytic boosted boson discrimination

  • Andrew J. Larkoski
  • Ian Moult
  • Duff Neill
Open Access
Regular Article - Theoretical Physics

Abstract

Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. Our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Abdesselam et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].
  4. [4]
    D. Adams et al., Towards an Understanding of the Correlations in Jet Substructure, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    CMS collaboration, Jet Substructure Algorithms, CMS-PAS-JME-10-013.
  6. [6]
    ATLAS collaboration, Jet substructure in ATLAS, ATL-PHYS-PROC-2011-142 (2011).
  7. [7]
    CMS collaboration, Shape, Transverse Size and Charged Hadron Multiplicity of Jets in pp Collisions at 7 TeV, JHEP 06 (2012) 160 [arXiv:1204.3170] [INSPIRE].
  8. [8]
    ATLAS collaboration, Studies of the impact and mitigation of pile-up on large-R and groomed jets in ATLAS at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-066 (2012).
  9. [9]
    ATLAS collaboration, ATLAS measurements of the properties of jets for boosted particle searches, Phys. Rev. D 86 (2012) 072006 [arXiv:1206.5369] [INSPIRE].
  10. [10]
    ATLAS collaboration, Performance of large-R jets and jet substructure reconstruction with the ATLAS detector, ATLAS-CONF-2012-065 (2012).
  11. [11]
    ATLAS collaboration, Jet mass and substructure of inclusive jets in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE].
  12. [12]
    ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2013) 076 [arXiv:1306.4945] [INSPIRE].
  13. [13]
    ATLAS collaboration, Measurement of jet shapes in top-quark pair events at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 73 (2013) 2676 [arXiv:1307.5749] [INSPIRE].
  14. [14]
    ATLAS collaboration, Performance and Validation of Q-Jets at the ATLAS Detector in pp Collisions at \( \sqrt{s}=8 \) TeV in 2012, ATLAS-CONF-2013-087 (2013).
  15. [15]
    ATLAS collaboration, Jet Charge Studies with the ATLAS Detector Using \( \sqrt{s}=8 \) TeV Proton-Proton Collision Data, ATLAS-CONF-2013-086 (2013).
  16. [16]
    ATLAS collaboration, Performance of pile-up subtraction for jet shapes, ATLAS-CONF-2013-085 (2013).
  17. [17]
    ATLAS collaboration, Pile-up subtraction and suppression for jets in ATLAS, ATLAS-CONF-2013-083 (2013).
  18. [18]
    CMS collaboration, Identifying Hadronically Decaying Vector Bosons Merged into a Single Jet, CMS-PAS-JME-13-006.
  19. [19]
    CMS collaboration, Performance of quark/gluon discrimination in 8 TeV pp data, CMS-PAS-JME-13-002.
  20. [20]
    CMS collaboration, Pileup Jet Identification, CMS-PAS-JME-13-005.
  21. [21]
    CMS collaboration, Jet Substructure Algorithms, CMS-PAS-JME-10-013.
  22. [22]
    CMS collaboration, Measurement of the Subjet Multiplicity in Dijet Events from proton-proton Collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-QCD-10-041.
  23. [23]
    ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].
  24. [24]
    P. Loch, Studies of jet shapes and jet substructure in proton-proton collisions at \( \sqrt{s}=7 \) TeV with ATLAS, PoS(EPS-HEP 2013)442.
  25. [25]
    CMS collaboration, Boosted Top Jet Tagging at CMS, CMS-PAS-JME-13-007.
  26. [26]
    CMS collaboration, V Tagging Observables and Correlations, CMS-PAS-JME-14-002.
  27. [27]
    ATLAS collaboration, Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, New J. Phys. 16 (2014) 113013 [arXiv:1407.0800] [INSPIRE].
  28. [28]
    CMS collaboration, Search for BSM ttbar Production in the Boosted All-Hadronic Final State, CMS-PAS-EXO-11-006.
  29. [29]
    ATLAS, CMS collaborations, S. Fleischmann, Boosted top quark techniques and searches for \( t\overline{t} \) resonances at the LHC, J. Phys. Conf. Ser. 452 (2013) 012034 [INSPIRE].
  30. [30]
    ATLAS, CMS collaborations, J. Pilot, Boosted Top Quarks, Top Pair Resonances, and Top Partner Searches at the LHC, EPJ Web Conf. 60 (2013) 09003.Google Scholar
  31. [31]
    ATLAS collaboration, Performance of boosted top quark identification in 2012 ATLAS data, ATLAS-CONF-2013-084 (2013).
  32. [32]
    CMS collaboration, Search for Anomalous \( t\overline{t} \) Production in the Highly-Boosted All-Hadronic Final State, JHEP 09 (2012) 029 [Erratum ibid. 1403 (2014) 132] [arXiv:1204.2488] [INSPIRE].
  33. [33]
    CMS collaboration, Search for a Higgs boson in the decay channel \( H\to Z{Z}^{\left(\ast \right)}\to q\overline{q}{\ell}^{-}{\ell}^{+} \) in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].
  34. [34]
    CMS collaboration, Search for a Standard Model-like Higgs boson decaying into \( WW\to l\nu q\overline{q} \) in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-13-008.
  35. [35]
    CMS collaboration, Search for pair-produced vector-like quarks of charge −1/3 decaying to bH using boosted Higgs jet-tagging in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-14-001, (2014).
  36. [36]
    CMS collaboration, Search for top-Higgs resonances in all-hadronic final states using jet substructure methods, CMS-PAS-B2G-14-002.
  37. [37]
    CMS collaboration, Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure, JHEP 06 (2015) 080 [arXiv:1503.01952] [INSPIRE].
  38. [38]
    CMS collaboration, Search for pair-produced vector-like top quark partners decaying to bW in the fully hadronic channel using jet substructure at 8 TeV, CMS-PAS-B2G-12-013.
  39. [39]
    CMS collaboration, Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2016)145 [arXiv:1506.01443] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  41. [41]
    I. Feige, M.D. Schwartz, I.W. Stewart and J. Thaler, Precision Jet Substructure from Boosted Event Shapes, Phys. Rev. Lett. 109 (2012) 092001 [arXiv:1204.3898] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Field, G. Gur-Ari, D.A. Kosower, L. Mannelli and G. Perez, Three-Prong Distribution of Massive Narrow QCD Jets, Phys. Rev. D 87 (2013) 094013 [arXiv:1212.2106] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Dasgupta, A. Powling and A. Siodmok, On jet substructure methods for signal jets, JHEP 08 (2015) 079 [arXiv:1503.01088] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M.H. Seymour, Jet shapes in hadron collisions: Higher orders, resummation and hadronization, Nucl. Phys. B 513 (1998) 269 [hep-ph/9707338] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H.-n. Li, Z. Li and C.P. Yuan, QCD resummation for jet substructures, Phys. Rev. Lett. 107 (2011) 152001 [arXiv:1107.4535] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A.J. Larkoski, QCD Analysis of the Scale-Invariance of Jets, Phys. Rev. D 86 (2012) 054004 [arXiv:1207.1437] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Jankowiak and A.J. Larkoski, Angular Scaling in Jets, JHEP 04 (2012) 039 [arXiv:1201.2688] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y.-T. Chien and I. Vitev, Jet Shape Resummation Using Soft-Collinear Effective Theory, JHEP 12 (2014) 061 [arXiv:1405.4293] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Y.-T. Chien, Resummation of Jet Shapes and Extracting Properties of the quark-gluon Plasma, Int. J. Mod. Phys. Conf. Ser. 37 (2015) 1560047 [arXiv:1411.0741] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    J. Isaacson, H.-n. Li, Z. Li and C.P. Yuan, Factorization for substructures of boosted Higgs jets, arXiv:1505.06368 [INSPIRE].
  54. [54]
    D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet Charge at the LHC, Phys. Rev. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    W.J. Waalewijn, Calculating the Charge of a Jet, Phys. Rev. D 86 (2012) 094030 [arXiv:1209.3019] [INSPIRE].ADSGoogle Scholar
  56. [56]
    D. Bertolini, J. Thaler and J.R. Walsh, The First Calculation of Fractional Jets, JHEP 05 (2015) 008 [arXiv:1501.01965] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    B. Bhattacherjee, S. Mukhopadhyay, M.M. Nojiri, Y. Sakaki and B.R. Webber, Associated jet and subjet rates in light-quark and gluon jet discrimination, JHEP 04 (2015) 131 [arXiv:1501.04794] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Catani, G. Turnock and B.R. Webber, Heavy jet mass distribution in e + e annihilation, Phys. Lett. B 272 (1991) 368 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  60. [60]
    Y.-T. Chien, R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of Jet Mass at Hadron Colliders, Phys. Rev. D 87 (2013) 014010 [arXiv:1208.0010] [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A.J. Larkoski, I. Moult and D. Neill, Building a Better Boosted Top Tagger, Phys. Rev. D 91 (2015) 034035 [arXiv:1411.0665] [INSPIRE].ADSGoogle Scholar
  68. [68]
    L.G. Almeida, S.J. Lee, G. Perez, G.F. Sterman, I. Sung and J. Virzi, Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].ADSGoogle Scholar
  69. [69]
    G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A.J. Larkoski and J. Thaler, Unsafe but Calculable: Ratios of Angularities in Perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A.J. Larkoski and J. Thaler, Aspects of jets at 100 TeV, Phys. Rev. D 90 (2014) 034010 [arXiv:1406.7011] [INSPIRE].ADSGoogle Scholar
  73. [73]
    A.J. Larkoski, S. Marzani and J. Thaler, Sudakov Safety in Perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].ADSGoogle Scholar
  74. [74]
    A.J. Larkoski, I. Moult and D. Neill, Toward Multi-Differential Cross Sections: Measuring Two Angularities on a Single Jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross Sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization and the Soft Substructure of Jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].ADSGoogle Scholar
  78. [78]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].ADSzbMATHGoogle Scholar
  79. [79]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].ADSGoogle Scholar
  80. [80]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  81. [81]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].ADSGoogle Scholar
  82. [82]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0109045] [INSPIRE].ADSGoogle Scholar
  83. [83]
    G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    G.P. Korchemsky and S. Tafat, On power corrections to the event shape distributions in QCD, JHEP 10 (2000) 010 [hep-ph/0007005] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  86. [86]
    W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-Order Corrections to Timelike Jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].ADSGoogle Scholar
  87. [87]
    A. Gehrmann-De Ridder, M. Ritzmann and P.Z. Skands, Timelike Dipole-Antenna Showers with Massive Fermions, Phys. Rev. D 85 (2012) 014013 [arXiv:1108.6172] [INSPIRE].ADSGoogle Scholar
  88. [88]
    M. Ritzmann, D.A. Kosower and P. Skands, Antenna Showers with Hadronic Initial States, Phys. Lett. B 718 (2013) 1345 [arXiv:1210.6345] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    L. Hartgring, E. Laenen and P. Skands, Antenna Showers with One-Loop Matrix Elements, JHEP 10 (2013) 127 [arXiv:1303.4974] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A.J. Larkoski, J.J. Lopez-Villarejo and P. Skands, Helicity-Dependent Showers and Matching with VINCIA, Phys. Rev. D 87 (2013) 054033 [arXiv:1301.0933] [INSPIRE].ADSGoogle Scholar
  91. [91]
    G.P. Salam and D. Wicke, Hadron masses and power corrections to event shapes, JHEP 05 (2001) 061 [hep-ph/0102343] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    V. Mateu, I.W. Stewart and J. Thaler, Power Corrections to Event Shapes with Mass-Dependent Operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].ADSGoogle Scholar
  93. [93]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
  95. [95]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    S. Brandt and H. Dahmen, Axes and Scalar Measures of Two-Jet and Three-Jet Events, Z. Phys. C 1 (1979) 61.ADSGoogle Scholar
  97. [97]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  99. [99]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant k clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  103. [103]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].
  105. [105]
    H1 collaboration, C. Adloff et al., Measurement and QCD analysis of jet cross-sections in deep inelastic positron-proton collisions at \( \sqrt{s}=300 \) GeV, Eur. Phys. J. C 19 (2001) 289 [hep-ex/0010054] [INSPIRE].
  106. [106]
    R.B. Appleby and M.H. Seymour, Nonglobal logarithms in interjet energy flow with kt clustering requirement, JHEP 12 (2002) 063 [hep-ph/0211426] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    A. Banfi and M. Dasgupta, Problems in resumming interjet energy flows with k t clustering, Phys. Lett. B 628 (2005) 49 [hep-ph/0508159] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-p T jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  109. [109]
    R. Kelley, J.R. Walsh and S. Zuberi, Abelian Non-Global Logarithms from Soft Gluon Clustering, JHEP 09 (2012) 117 [arXiv:1202.2361] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].ADSGoogle Scholar
  112. [112]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, Jet Mass with a Jet Veto at Two Loops and the Universality of Non-Global Structure, Phys. Rev. D 86 (2012) 054017 [arXiv:1112.3343] [INSPIRE].ADSGoogle Scholar
  113. [113]
    A. Hornig, C. Lee, J.R. Walsh and S. Zuberi, Double Non-Global Logarithms In-N-Out of Jets, JHEP 01 (2012) 149 [arXiv:1110.0004] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet shape variables, Phys. Rev. Lett. 79 (1997) 3604 [hep-ph/9707309] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [Erratum ibid. D 62 (2000) 099902] [hep-ph/9806317] [INSPIRE].
  116. [116]
    Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett. 88 (2002) 122003 [hep-ph/0110315] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    Z. Nagy and Z. Trócsányi, Multijet cross-sections in deep inelastic scattering at next-to-leading order, Phys. Rev. Lett. 87 (2001) 082001 [hep-ph/0104315] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].ADSGoogle Scholar
  119. [119]
    A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].ADSGoogle Scholar
  120. [120]
    P. Pietrulewicz, Factorization and resummation for generic jet hierarchies, presented at SCET 2015.Google Scholar
  121. [121]
    P. Pietrulewicz, F.J. Tackmann and W.J. Waalewijn, Factorization and Resummation for Generic Hierarchies between Jets, arXiv:1601.05088 [INSPIRE].
  122. [122]
    N. Fischer, S. Gieseke, S. Plätzer and P. Skands, Revisiting radiation patterns in e + e collisions, Eur. Phys. J. C 74 (2014) 2831 [arXiv:1402.3186] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    OPAL collaboration, N. Fischer, S. Gieseke, S. Kluth, S. Plätzer and P. Skands, Measurement of observables sensitive to coherence effects in hadronic Z decays with the OPAL detector at LEP, Eur. Phys. J. C 75 (2015) 571 [arXiv:1505.01636] [INSPIRE].
  124. [124]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    P. Skands, Introduction to QCD, arXiv:1207.2389 [INSPIRE].
  126. [126]
    M.H. Seymour and M. Marx, Monte Carlo Event Generators, arXiv:1304.6677 [INSPIRE].
  127. [127]
    S. Gieseke, Simulation of jets at colliders, Prog. Part. Nucl. Phys. 72 (2013) 155 [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    S. Höche, Introduction to parton-shower event generators, arXiv:1411.4085 [INSPIRE].
  129. [129]
    T. Gleisberg, S. Hoeche, F. Krauss, A. Schalicke, S. Schumann and J.-C. Winter, SHERPA 1. alpha: A Proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    L. Lönnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C 75 (2015) 461 [arXiv:1506.05057] [INSPIRE].ADSCrossRefGoogle Scholar
  133. [133]
    G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour and L. Stanco, HERWIG: A Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 — April 1991, Comput. Phys. Commun. 67 (1992) 465 [INSPIRE].
  134. [134]
    G. Corcella et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].
  135. [135]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  136. [136]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    S. Platzer and S. Gieseke, Dipole Showers and Automated NLO Matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    Y.L. Dokshitzer, V.A. Khoze and S.I. Troian, Specific features of heavy quark production. LPHD approach to heavy particle spectra, Phys. Rev. D 53 (1996) 89 [hep-ph/9506425] [INSPIRE].ADSGoogle Scholar
  140. [140]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    S. Platzer and S. Gieseke, Coherent Parton Showers with Local Recoils, JHEP 01 (2011) 024 [arXiv:0909.5593] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  142. [142]
    M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: A Case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation Properties of Jet Vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].ADSGoogle Scholar
  144. [144]
    M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    S.W. Bosch, B.O. Lange, M. Neubert and G. Paz, Factorization and shape function effects in inclusive B meson decays, Nucl. Phys. B 699 (2004) 335 [hep-ph/0402094] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  146. [146]
    A.H. Hoang and I.W. Stewart, Designing gapped soft functions for jet production, Phys. Lett. B 660 (2008) 483 [arXiv:0709.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  147. [147]
    Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].ADSGoogle Scholar
  148. [148]
    R. Akhoury and V.I. Zakharov, On the universality of the leading, 1/Q power corrections in QCD, Phys. Lett. B 357 (1995) 646 [hep-ph/9504248] [INSPIRE].ADSCrossRefGoogle Scholar
  149. [149]
    Y.L. Dokshitzer and B.R. Webber, Calculation of power corrections to hadronic event shapes, Phys. Lett. B 352 (1995) 451 [hep-ph/9504219] [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    C. Lee and G.F. Sterman, Universality of nonperturbative effects in event shapes, eConf C 0601121 (2006) A001 [hep-ph/0603066] [INSPIRE].Google Scholar
  151. [151]
    C. Lee, Universal nonperturbative effects in event shapes from soft-collinear effective theory, Mod. Phys. Lett. A 22 (2007) 835 [hep-ph/0703030] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  152. [152]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Dissecting Soft Radiation with Factorization, Phys. Rev. Lett. 114 (2015) 092001 [arXiv:1405.6722] [INSPIRE].ADSCrossRefGoogle Scholar
  153. [153]
    M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].ADSCrossRefGoogle Scholar
  154. [154]
    E. Gardi, Perturbative and nonperturbative aspects of moments of the thrust distribution in e+eannihilation, JHEP 04 (2000) 030 [hep-ph/0003179] [INSPIRE].ADSCrossRefGoogle Scholar
  155. [155]
    A. Hornig, C. Lee and G. Ovanesyan, Effective Predictions of Event Shapes: Factorized, Resummed and Gapped Angularity Distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [INSPIRE].ADSCrossRefGoogle Scholar
  156. [156]
    L3 collaboration, P. Achard et al., Studies of hadronic event structure in e + e annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].
  157. [157]
    T. Gehrmann, M. Jaquier and G. Luisoni, Hadronization effects in event shape moments, Eur. Phys. J. C 67 (2010) 57 [arXiv:0911.2422] [INSPIRE].ADSCrossRefGoogle Scholar
  158. [158]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for α s(m Z), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  159. [159]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Precision Thrust Cumulant Moments at N 3 LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].ADSGoogle Scholar
  160. [160]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LLincluding power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].ADSGoogle Scholar
  161. [161]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, Precise determination of α s from the C-parameter distribution, Phys. Rev. D 91 (2015) 094018 [arXiv:1501.04111] [INSPIRE].ADSGoogle Scholar
  162. [162]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].ADSGoogle Scholar
  163. [163]
    X. Liu and F. Petriello, Resummation of jet-veto logarithms in hadronic processes containing jets, Phys. Rev. D 87 (2013) 014018 [arXiv:1210.1906] [INSPIRE].ADSGoogle Scholar
  164. [164]
    X. Liu and F. Petriello, Reducing theoretical uncertainties for exclusive Higgs-boson plus one-jet production at the LHC, Phys. Rev. D 87 (2013) 094027 [arXiv:1303.4405] [INSPIRE].ADSGoogle Scholar
  165. [165]
    J. Talbert, Automated Calculations of Dijet Soft Functions, presented at SCET 2015.Google Scholar
  166. [166]
    R. Boughezal, X. Liu and F. Petriello, N-jettiness soft function at next-to-next-to-leading order, Phys. Rev. D 91 (2015) 094035 [arXiv:1504.02540] [INSPIRE].ADSGoogle Scholar
  167. [167]
    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].ADSCrossRefGoogle Scholar
  168. [168]
    H. Weigert, Nonglobal jet evolution at finite N c, Nucl. Phys. B 685 (2004) 321 [hep-ph/0312050] [INSPIRE].ADSCrossRefGoogle Scholar
  169. [169]
    Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite N c, Nucl. Phys. B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  170. [170]
    S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, arXiv:1501.03754 [INSPIRE].
  171. [171]
    R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].ADSCrossRefGoogle Scholar
  172. [172]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
  173. [173]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness Subtractions for NNLO QCD Calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
  174. [174]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].ADSCrossRefGoogle Scholar
  175. [175]
    A.J. Larkoski, F. Maltoni and M. Selvaggi, Tracking down hyper-boosted top quarks, JHEP 06 (2015) 032 [arXiv:1503.03347] [INSPIRE].ADSCrossRefGoogle Scholar
  176. [176]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].ADSGoogle Scholar
  177. [177]
    I.W. Stewart and C.W. Bauer, Lectures on the soft-collinear effective theory, http://ocw.mit.edu/courses/physics/8-851-effective-field-theory-spring-2013/lecture-notes/MIT8_851S13_scetnotes.pdf.
  178. [178]
    T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, arXiv:1410.1892 [INSPIRE].
  179. [179]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Soft Function for Exclusive N-Jet Production at Hadron Colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].ADSGoogle Scholar
  180. [180]
    M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90 (2014) 054029 [arXiv:1407.3272] [INSPIRE].ADSGoogle Scholar
  181. [181]
    N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996) 403 [hep-ph/9512370] [INSPIRE].ADSCrossRefGoogle Scholar
  182. [182]
    G.P. Korchemsky, G. Oderda and G.F. Sterman, Power corrections and nonlocal operators, AIP Conf. Proc. 407 (1997) 988 [hep-ph/9708346] [INSPIRE].ADSCrossRefGoogle Scholar
  183. [183]
    C. Lee and G.F. Sterman, Momentum Flow Correlations from Event Shapes: Factorized Soft Gluons and Soft-Collinear Effective Theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [INSPIRE].ADSGoogle Scholar
  184. [184]
    C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e + e Event Shape Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [INSPIRE].ADSGoogle Scholar
  185. [185]
    C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].ADSGoogle Scholar
  186. [186]
    A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].ADSGoogle Scholar
  187. [187]
    D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE].ADSCrossRefGoogle Scholar
  188. [188]
    R.K. Ellis, D.A. Ross and A.E. Terrano, The Perturbative Calculation of Jet Structure in e + e Annihilation, Nucl. Phys. B 178 (1981) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  189. [189]
    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop ggg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  190. [190]
    S.D. Badger and E.W.N. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].ADSCrossRefGoogle Scholar
  191. [191]
    S. Catani and M.H. Seymour, The Dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].ADSCrossRefGoogle Scholar
  192. [192]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  193. [193]
    T. Huber and D. Maître, HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  194. [194]
    T. Huber and D. Maître, HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  195. [195]
    W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e + e annihilation, Phys. Rev. D 46 (1992) 1980 [INSPIRE].ADSGoogle Scholar
  196. [196]
    F.A. Berends and W.T. Giele, Multiple Soft Gluon Radiation in Parton Processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].ADSCrossRefGoogle Scholar
  197. [197]
    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].ADSCrossRefGoogle Scholar
  198. [198]
    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  199. [199]
    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].ADSCrossRefGoogle Scholar
  200. [200]
    G. Altarelli, R.K. Ellis and G. Martinelli, Large Perturbative Corrections to the Drell-Yan Process in QCD, Nucl. Phys. B 157 (1979) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  201. [201]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  202. [202]
    L.G. Almeida, S.D. Ellis, C. Lee, G. Sterman, I. Sung and J.R. Walsh, Comparing and counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].ADSCrossRefGoogle Scholar
  203. [203]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].ADSCrossRefGoogle Scholar
  204. [204]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e + e annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  205. [205]
    Y. Sakaki, Evolution variable dependence of jet substructure, JHEP 08 (2015) 100 [arXiv:1506.04811] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations