Advertisement

Anomalous coupling, top-mass and parton-shower effects in W + W production

  • J. Bellm
  • S. Gieseke
  • N. Greiner
  • G. Heinrich
  • S. Plätzer
  • C. Reuschle
  • J. F. von Soden-Fraunhofen
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate the process \( pp\to {W}^{+}{W}^{-}\to {e}^{+}{\nu}_e{\mu}^{-}{\overline{\nu}}_{\mu } \) at NLO QCD, including also effective field theory (EFT) operators mediating the ggW + W interaction, which first occur at dimension eight. We further combine the NLO and EFT matrix elements produced by GoSam with the Herwig7/Matchbox framework, which offers the possibility to study the impact of a parton shower. We assess the effects of the anomalous couplings by comparing them to top-mass effects as well as uncertainties related to variations of the renormalisation, factorisation and hard shower scales.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  2. [2]
    ATLAS collaboration, Search for production of WW/WZ resonances decaying to a lepton, neutrino and jets in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 209 [Erratum ibid. C 75 (2015) 370] [arXiv:1503.04677] [INSPIRE].
  3. [3]
    CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 173 [arXiv:1405.1994] [INSPIRE].
  4. [4]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 174 [arXiv:1405.3447] [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurement of W + W production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector and limits on anomalous WWZ and WWγ couplings, Phys. Rev. D 87 (2013) 112001 [arXiv:1210.2979] [INSPIRE].
  6. [6]
    CMS collaboration, Measurement of the W + W Cross section in pp Collisions at \( \sqrt{s}=7 \) TeV and Limits on Anomalous WWγ and WWZ couplings, Eur. Phys. J. C 73 (2013) 2610 [arXiv:1306.1126] [INSPIRE].
  7. [7]
    ATLAS collaboration, Measurement of the W + W production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2014-033 (2014).
  8. [8]
    CMS collaboration, Measurement of W + W and ZZ production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE].
  9. [9]
    J.M. Campbell and R.K. Ellis, An Update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.M. Campbell, R.K. Ellis and C. Williams, Gluon-Gluon Contributions to W + W Production and Higgs Interference Effects, JHEP 10 (2011) 005 [arXiv:1107.5569] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    T. Gehrmann et al., W + W Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, Transverse-momentum resummation for vector-boson pair production at NNLL+NNLO, JHEP 08 (2015) 154 [arXiv:1507.02565] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to W + W production through gluon fusion, Phys. Lett. B 754 (2016) 275 [arXiv:1511.08617] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    I. Moult and I.W. Stewart, Jet Vetoes interfering with H → WW, JHEP 09 (2014) 129 [arXiv:1405.5534] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Meade, H. Ramani and M. Zeng, Transverse momentum resummation effects in W + W measurements, Phys. Rev. D 90 (2014) 114006 [arXiv:1407.4481] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Jaiswal and T. Okui, Explanation of the WW excess at the LHC by jet-veto resummation, Phys. Rev. D 90 (2014) 073009 [arXiv:1407.4537] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P.F. Monni and G. Zanderighi, On the excess in the inclusive \( {W}^{+}{W}^{-}\to {l}^{+}{l}^{-}\nu \overline{\nu} \) cross section, JHEP 05 (2015) 013 [arXiv:1410.4745] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P. Jaiswal, P. Meade and H. Ramani, Precision diboson measurements and the interplay of p T and jet-veto resummations, arXiv:1509.07118 [INSPIRE].
  20. [20]
    D.A. Dicus, C. Kao and W.W. Repko, Gluon Production of Gauge Bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].ADSGoogle Scholar
  21. [21]
    E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Kauer, Interference effects for \( H\to WW/ZZ\to \ell {\nu}_{\ell}\overline{\ell}{\nu}_{\ell } \) searches in gluon fusion at the LHC, JHEP 12 (2013) 082 [arXiv:1310.7011] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Kauer, C. O’Brien and E. Vryonidou, Interference effects for \( H\to WW\to \ell \nu q\overline{q}^{\prime } \) and \( H\to ZZ\to \ell \overline{\ell}q\overline{q} \) searches in gluon fusion at the LHC, JHEP 10 (2015) 074 [arXiv:1506.01694] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Bonvini, F. Caola, S. Forte, K. Melnikov and G. Ridolfi, Signal-background interference effects for gg → H → W + W beyond leading order, Phys. Rev. D 88 (2013) 034032 [arXiv:1304.3053] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Billóni, S. Dittmaier, B. Jäger and C. Speckner, Next-to-leading order electroweak corrections to pp → W + W 4 leptons at the LHC in double-pole approximation, JHEP 12 (2013) 043 [arXiv:1310.1564] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Bierweiler, T. Kasprzik, J.H. Kühn and S. Uccirati, Electroweak corrections to W-boson pair production at the LHC, JHEP 11 (2012) 093 [arXiv:1208.3147] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Gieseke, T. Kasprzik and J.H. Kühn, Vector-boson pair production and electroweak corrections in Herwig++, Eur. Phys. J. C 74 (2014) 2988 [arXiv:1401.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Bähr et al., Herwig ++Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Bellm et al., Herwig7/Herwig++3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  35. [35]
    K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Ohnemus, An Order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Frixione, A Next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : Lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC: Complementary results from H → WW, Phys. Rev. D 89 (2014) 053011 [arXiv:1312.1628] [INSPIRE].ADSGoogle Scholar
  46. [46]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss and T. Plehn, Mass Effects in the Higgs-Gluon Coupling: Boosted vs. Off-Shell Production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].
  50. [50]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to WW+jet production at hadron colliders, Phys. Rev. Lett. 100 (2008) 062003 [arXiv:0710.1577] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order predictions for WW + 1 jet distributions at the LHC, JHEP 12 (2007) 056 [arXiv:0710.1832] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to \( pp/p\overline{p}\to WW+ jet+X \) including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    W.-H. Li, R.-Y. Zhang, W.-G. Ma, L. Guo, X.-Z. Li and Y. Zhang, NLO QCD and electroweak corrections to WW+jet production with leptonic W-boson decays at LHC, Phys. Rev. D 92 (2015) 033005 [arXiv:1507.07332] [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Melia, K. Melnikov, R. Rontsch, M. Schulze and G. Zanderighi, Gluon fusion contribution to W + W + jet production, JHEP 08 (2012) 115 [arXiv:1205.6987] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini and F. Siegert, Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton +0, 1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Plätzer and S. Gieseke, Dipole Showers and Automated NLO Matching in Herwig++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G. Brooijmans et al., Les Houches 2013: Physics at TeV Colliders: New Physics Working Group Report, arXiv:1405.1617 [INSPIRE].
  60. [60]
    J. Ellis, V. Sanz and T. You, The Effective Standard Model after LHC Run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    A. Falkowski, Effective field theory approach to LHC Higgs data, arXiv:1505.00046 [INSPIRE].
  62. [62]
    CMS collaboration, Measurements of the ZZ production cross sections in the 2l2ν channel in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV and combined constraints on triple gauge couplings, Eur. Phys. J. C 75 (2015) 511 [arXiv:1503.05467] [INSPIRE].
  63. [63]
    ATLAS collaboration, Combination of searches for WW, WZ and ZZ resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 755 (2016) 285 [arXiv:1512.05099] [INSPIRE].
  64. [64]
    ATLAS collaboration, Measurement of the WW + WZ cross section and limits on anomalous triple gauge couplings using final states with one lepton, missing transverse momentum and two jets with the ATLAS detector at \( \sqrt{s}=7 \) TeV, JHEP 01 (2015) 049 [arXiv:1410.7238] [INSPIRE].
  65. [65]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    J. Kuipers, T. Ueda and J.A.M. Vermaseren, Code Optimization in FORM, Comput. Phys. Commun. 189 (2015) 1 [arXiv:1310.7007] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors, Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 1211 (2012) 128] [arXiv:1203.0291] [INSPIRE].
  70. [70]
    H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multi-leg One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].CrossRefGoogle Scholar
  72. [72]
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: A Numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    G. Cullen, J.P. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon, T. Reiter et al., Golem95C: A library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    J.P. Guillet, G. Heinrich and J.F. von Soden-Fraunhofen, Tools for NLO automation: extension of the golem95C integral library, Comput. Phys. Commun. 185 (2014) 1828 [arXiv:1312.3887] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    H. van Deurzen, Associated Higgs Production at NLO with GoSam, Acta Phys. Polon. B 44 (2013) 2223 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level, JHEP 10 (2010) 105 [arXiv:1008.2441] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  81. [81]
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, An Algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (2005) 015 [hep-ph/0504267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  83. [83]
    A. Denner and S. Dittmaier, The Complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185 (2014) 560 [arXiv:1308.3462] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    S. Plätzer, ExSample: A Library for Sampling Sudakov-Type Distributions, Eur. Phys. J. C 72 (2012) 1929 [arXiv:1108.6182] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  89. [89]
    J.R. Andersen et al., Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report, arXiv:1405.1067 [INSPIRE].
  90. [90]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP 12 (2003) 045 [hep-ph/0310083] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    S. Plätzer and S. Gieseke, Coherent Parton Showers with Local Recoils, JHEP 01 (2011) 024 [arXiv:0909.5593] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  93. [93]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    P.Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    C. Degrande et al., Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    M. Jacob and G.C. Wick, On the general theory of collisions for particles with spin, Annals Phys. 7 (1959) 404 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • J. Bellm
    • 1
  • S. Gieseke
    • 2
  • N. Greiner
    • 3
  • G. Heinrich
    • 4
  • S. Plätzer
    • 1
    • 5
  • C. Reuschle
    • 2
    • 6
  • J. F. von Soden-Fraunhofen
    • 4
  1. 1.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  2. 2.Institut für Theoretische PhysikKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Physik-InstitutUniversität ZürichZürichSwitzerland
  4. 4.Max-Planck-Institut für PhysikMünchenGermany
  5. 5.Particle Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterU.K.
  6. 6.HEP Theory Group, Physics DepartmentFlorida State UniversityTallahasseeU.S.A.

Personalised recommendations