SIMP spectroscopy

  • Yonit Hochberg
  • Eric Kuflik
  • Hitoshi Murayama
Open Access
Regular Article - Theoretical Physics


We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3 → 2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e + e colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.


Beyond Standard Model Cosmology of Theories beyond the SM Chiral Lagrangians 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Witten, Global aspects of Current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z 3 symmetry, JHEP 09 (2015) 063 [arXiv:1505.00960] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z -portal, Phys. Lett. B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Bernal, C. Garcia-Cely and R. Rosenfeld, WIMP and SIMP dark matter from the spontaneous breaking of a global group, JCAP 04 (2015) 012 [arXiv:1501.01973] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Schwaller, Gravitational waves from a dark phase transition, Phys. Rev. Lett. 115 (2015) 181101 [arXiv:1504.07263] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Bernal and X. Chu, Z 2 SIMP dark matter, JCAP 01 (2016) 006 [arXiv:1510.08527] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production regimes for self-interacting dark matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Hansen, K. Langæble and F. Sannino, SIMP model at NNLO in chiral perturbation theory, Phys. Rev. D 92 (2015) 075036 [arXiv:1507.01590] [INSPIRE].ADSGoogle Scholar
  14. [14]
    D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].
  15. [15]
    M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].
  16. [16]
    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Rocha et al., Cosmological simulations with self-interacting dark matter I: constant density cores and substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological simulations with self-interacting dark matter II: halo shapes vs. observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
  19. [19]
    D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].
  20. [20]
    W.J.G. de Blok, The core-cusp problem, Adv. Astron. 2010 (2010) 789293 [arXiv:0910.3538] [INSPIRE].Google Scholar
  21. [21]
    M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Kaplinghat, S. Tulin and H.-B. Yu, Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Zavala, M. Vogelsberger and M.G. Walker, Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals, Monthly Notices of the Royal Astronomical Society: Letters 431 (2013) L20 [arXiv:1211.6426] [INSPIRE].
  24. [24]
    M. Vogelsberger, J. Zavala and A. Loeb, Subhaloes in self-interacting galactic dark matter haloes, Mon. Not. Roy. Astron. Soc. 423 (2012) 3740 [arXiv:1201.5892] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Massey et al., The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827, Mon. Not. Roy. Astron. Soc. 449 (2015) 3393 [arXiv:1504.03388] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Kahlhoefer, K. Schmidt-Hoberg, J. Kummer and S. Sarkar, On the interpretation of dark matter self-interactions in Abell 3827, Mon. Not. Roy. Astron. Soc. 452 (2015) L54 [arXiv:1504.06576] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New electron beam-dump experiments to search for MeV to few-GeV dark matter, Phys. Rev. D 88 (2013) 114015 [arXiv:1307.6554] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining light dark matter with low-energy e + e colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    DELPHI, OPAL, LEP Electroweak, ALEPH, L3 collaboration, S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
  32. [32]
    H. Baer et al., The International Linear Collider technical design report — Volume 2: physics, arXiv:1306.6352 [INSPIRE].
  33. [33]
    BaBar collaboration, J.P. Lees et al., Search for a dark photon in e + e collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  34. [34]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  35. [35]
    CMS collaboration, Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2013) 030 [arXiv:1310.7291] [INSPIRE].
  36. [36]
    J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z -mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    ATLAS collaboration, Search for high-mass dilepton resonances in 20 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-017 (2013).
  38. [38]
    BaBar collaboration, B. Aubert et al., Search for Invisible decays of a light scalar in radiative transitions Y3SγA 0, arXiv:0808.0017 [INSPIRE].
  39. [39]
    I.M. Shoemaker and L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].ADSGoogle Scholar
  40. [40]
    DELPHI collaboration, J. Abdallah et al., Search for one large extra dimension with the DELPHI detector at LEP, Eur. Phys. J. C 60 (2009) 17 [arXiv:0901.4486] [INSPIRE].
  41. [41]
    S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically decoupling dark matter, arXiv:1512.04545 [INSPIRE].
  43. [43]
    M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current dark matter annihilation constraints from CMB and low-redshift data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].ADSGoogle Scholar
  44. [44]
    R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining light dark matter with diffuse X-ray and gamma-ray observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].
  46. [46]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  47. [47]
    B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].ADSGoogle Scholar
  48. [48]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  49. [49]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
  50. [50]
    J. Kang and M.A. Luty, Macroscopic strings and ‘quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    F.A. Berends, G.J.H. Burgers, C. Mana, M. Martinez and W.L. van Neerven, Radiative corrections to the process e + e neutrino anti-neutrino γ, Nucl. Phys. B 301 (1988) 583 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    C. Hearty, T. Higuchi, Y. Iwasaki, T. Iwashita, C. Li and K. Miyabayashi, private communications.Google Scholar
  53. [53]
    SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].
  54. [54]
    SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].
  55. [55]
    SuperCDMS collaboration, R. Agnese et al., New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].
  56. [56]
    R. Essig, J. Mardon and T. Volansky, Direct detection of sub-GeV dark matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].ADSGoogle Scholar
  57. [57]
    P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor probes of light dark matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting detectors for superlight dark matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Y. Hochberg, M. Pyle, Y. Zhao and K.M. Zurek, Detecting superlight dark matter with Fermi-degenerate materials, arXiv:1512.04533 [INSPIRE].
  60. [60]
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First direct detection limits on sub-GeV dark matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088] [INSPIRE].
  62. [62]
    R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct detection of sub-GeV dark matter with semiconductor targets, arXiv:1509.01598 [INSPIRE].
  63. [63]
    Belle, BaBar collaboration, A.J. Bevan et al., The physics of the B factories, Eur. Phys. J. C 74 (2014) 3026 [arXiv:1406.6311] [INSPIRE].
  64. [64]
    Z. Fodor, private communications.Google Scholar
  65. [65]
    A. Soffer, Constraints on dark forces from the B factories and low-energy experiments, arXiv:1409.5263 [INSPIRE].
  66. [66]
    S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, arXiv:1504.04855 [INSPIRE].
  67. [67]
    A. Chaus, J. List and M. Titov, Model-independent WIMP searches at ILC with single photon, a talk presented at the International Workshop on Future Linear Colliders , October 6-10, Belgrade, Serbia (2014).
  68. [68]
    ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].
  69. [69]
    S. Riemann, Fermion pair production at a linear collider — A sensitive tool for new physics searches, pages/TDR CD/PartIII/references/LC-TH-2001-007.pdf.
  70. [70]
    R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A decaying to e + e , JHEP 02 (2011) 009 [arXiv:1001.2557] [INSPIRE].ADSGoogle Scholar
  71. [71]
    N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    Y. Bai and Z. Han, Measuring the dark force at the LHC, Phys. Rev. Lett. 103 (2009) 051801 [arXiv:0902.0006] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, JHEP 04 (2010) 116 [arXiv:0909.0290] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  75. [75]
    P. Schwaller, D. Stolarski and A. Weiler, Emerging jets, JHEP 05 (2015) 059 [arXiv:1502.05409] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J. Erlich, An introduction to holographic QCD for nonspecialists, Contemp. Phys. 56 (2015) 159 [arXiv:1407.5002] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].
  78. [78]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].
  79. [79]
    D. Garcia Gudino and G. Toledo Sanchez, The ωρπ coupling and the influence of heavier esonances, J. Phys. Conf. Ser. 378 (2012) 012040 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Yonit Hochberg
    • 1
    • 2
  • Eric Kuflik
    • 3
  • Hitoshi Murayama
    • 1
    • 2
    • 4
    • 5
  1. 1.Ernest Orlando Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  3. 3.Department of PhysicsLEPP, Cornell UniversityIthacaU.S.A.
  4. 4.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of Tokyo Institutes for Advanced Study, University of TokyoKashiwaJapan
  5. 5.Center for Japanese StudiesUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations