A planar four-loop form factor and cusp anomalous dimension in QCD

  • Johannes M. Henn
  • Alexander V. Smirnov
  • Vladimir A. Smirnov
  • Matthias SteinhauserEmail author
Open Access
Regular Article - Theoretical Physics


We compute the fermionic contribution to the photon-quark form factor to four-loop order in QCD in the planar limit in analytic form. From the divergent part of the latter the cusp and collinear anomalous dimensions are extracted. Results are also presented for the finite contribution. We briefly describe our method to compute all planar master integrals at four-loop order.


Perturbative QCD Scattering Amplitudes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.H. Mueller, On the Asymptotic Behavior of the Sudakov Form-factor, Phys. Rev. D 20 (1979) 2037 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    J.C. Collins, Algorithm to Compute Corrections to the Sudakov Form-factor, Phys. Rev. D 22 (1980) 1478 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys. Rev. D 24 (1981) 3281 [INSPIRE].ADSGoogle Scholar
  4. [4]
    L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [INSPIRE].ADSGoogle Scholar
  5. [5]
    I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    G. Kramer and B. Lampe, Two Jet Cross-Section in e + e Annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. C 42 (1989) 504] [INSPIRE].
  8. [8]
    T. Matsuura and W.L. van Neerven, Second Order Logarithmic Corrections to the Drell-Yan Cross-section, Z. Phys. C 38 (1988) 623 [INSPIRE].ADSGoogle Scholar
  9. [9]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    R.N. Lee and V.A. Smirnov, Analytic ϵ-expansions of Master Integrals Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality Weight, JHEP 02 (2011) 102 [arXiv:1010.1334] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form factors to three loops in QCD through to O2), JHEP 11 (2010) 102 [arXiv:1010.4478] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].
  26. [26]
    T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in \( \mathcal{N}=4 \) super Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic Duality for Form Factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    R. Boels, B.A. Kniehl and G. Yang, Master integrals for the four-loop Sudakov form factor, Nucl. Phys. B 902 (2016) 387 [arXiv:1508.03717] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. von Manteuffel, E. Panzer and R.M. Schabinger, On the Computation of Form Factors in Massless QCD with Finite Master Integrals, arXiv:1510.06758 [INSPIRE].
  30. [30]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  32. [32]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of \( \mathcal{O}\left(\alpha {\alpha}_s\right) \) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [INSPIRE].
  35. [35]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  36. [36]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].
  38. [38]
    A. Vogt, Next-to-next-to-leading logarithmic threshold resummation for deep inelastic scattering and the Drell-Yan process, Phys. Lett. B 497 (2001) 228 [hep-ph/0010146] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C.F. Berger, Higher orders in A(α s)/[1 − x]+ of nonsinglet partonic splitting functions, Phys. Rev. D 66 (2002) 116002 [hep-ph/0209107] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.A. Gracey, Anomalous dimension of nonsinglet Wilson operators at O(1/N f) in deep inelastic scattering, Phys. Lett. B 322 (1994) 141 [hep-ph/9401214] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production, Nucl. Phys. B 454 (1995) 253 [hep-ph/9506452] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A.E. Lipstein and L. Mason, From the holomorphic Wilson loop to ‘d log’ loop-integrands for super-Yang-Mills amplitudes, JHEP 05 (2013) 106 [arXiv:1212.6228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, Cambridge University Press (2016), arXiv:1212.5605.
  47. [47]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity Structure of Maximally Supersymmetric Scattering Amplitudes, Phys. Rev. Lett. 113 (2014) 261603 [arXiv:1410.0354] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Logarithmic Singularities and Maximally Supersymmetric Amplitudes, JHEP 06 (2015) 202 [arXiv:1412.8584] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    R.N. Lee, Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. 250 (2012) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    P.A. Baikov and K.G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All Master Integrals, Nucl. Phys. B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys. B 856 (2012) 95 [arXiv:1108.0732] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. Thesis, Humboldt U., Berlin, Inst. Math. (2015), arXiv:1506.07243 [INSPIRE].
  58. [58]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York, London, Sydney (1965).Google Scholar
  60. [60]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    V.A. Smirnov and E.R. Rakhmetov, The strategy of regions for asymptotic expansion of two loop vertex Feynman diagrams, Theor. Math. Phys. 120 (1999) 870 [hep-ph/9812529] [INSPIRE].CrossRefzbMATHGoogle Scholar
  62. [62]
    V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1.ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Johannes M. Henn
    • 1
  • Alexander V. Smirnov
    • 2
  • Vladimir A. Smirnov
    • 3
  • Matthias Steinhauser
    • 4
    Email author
  1. 1.PRISMA Cluster of ExcellenceJohannes Gutenberg UniversityMainzGermany
  2. 2.Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia
  4. 4.Institut für Theoretische TeilchenphysikKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations