Advertisement

High precision determination of the gluon fusion Higgs boson cross-section at the LHC

  • Charalampos Anastasiou
  • Claude Duhr
  • Falko Dulat
  • Elisabetta Furlan
  • Thomas Gehrmann
  • Franz Herzog
  • Achilleas Lazopoulos
  • Bernhard Mistlberger
Open Access
Regular Article - Theoretical Physics

Abstract

We present the most precise value for the Higgs boson cross-section in the gluon-fusion production mode at the LHC. Our result is based on a perturbative expansion through N3LO in QCD, in an effective theory where the top-quark is assumed to be infinitely heavy, while all other Standard Model quarks are massless. We combine this result with QCD corrections to the cross-section where all finite quark-mass effects are included exactly through NLO. In addition, electroweak corrections and the first corrections in the inverse mass of the top-quark are incorporated at three loops. We also investigate the effects of threshold resummation, both in the traditional QCD framework and following a SCET approach, which resums a class of π2 contributions to all orders. We assess the uncertainty of the cross-section from missing higher-order corrections due to both perturbative QCD effects beyond N3LO and unknown mixed QCD-electroweak effects. In addition, we determine the sensitivity of the cross-section to the choice of parton distribution function (PDF) sets and to the parametric uncertainty in the strong coupling constant and quark masses. For a Higgs mass of m H = 125 GeV and an LHC center-of-mass energy of 13 TeV, our best prediction for the gluon fusion cross-section is
$$ \sigma =48.58\;{\mathrm{pb}}_{-3.27\;\mathrm{p}\mathrm{b}}^{+2.22\;\mathrm{p}\mathrm{b}}\left(\mathrm{theory}\right)\pm 1.56\;\mathrm{p}\mathrm{b}\left(3.20\%\right)\left(\mathrm{P}\mathrm{D}\mathrm{F}+{\alpha}_s\right). $$

Keywords

Higgs Physics Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Bonciani, G. Degrassi and A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: A NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs Boson Interactions with Nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Inami, T. Kubota and Y. Okada, Effective Gauge Theory and the Effect of Heavy Quarks in Higgs Boson Decays, Z. Phys. C 18 (1983) 69 [INSPIRE].ADSGoogle Scholar
  16. [16]
    V.P. Spiridonov and K.G. Chetyrkin, Nonleading mass corrections and renormalization of the operators m psi-bar psi and g**2(mu nu), Sov. J. Nucl. Phys. 47 (1988) 522 [INSPIRE].Google Scholar
  17. [17]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α S3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    K.G. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.C. Collins, D.E. Soper and G.F. Sterman, Soft Gluons and Factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The resummation of soft gluons in hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Higher-order corrections in threshold resummation, Nucl. Phys. B 726 (2005) 317 [hep-ph/0506288] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Threshold resummation at N 3 LL accuracy and soft-virtual cross sections at N 3 LO, Nucl. Phys. B 888 (2014) 75 [arXiv:1405.4827] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Idilbi, X.-d. Ji and F. Yuan, Resummation of threshold logarithms in effective field theory for DIS, Drell-Yan and Higgs production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, arXiv:1410.1892 [INSPIRE].
  37. [37]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Bonvini and S. Marzani, Resummed Higgs cross section at N 3 LL, JHEP 09 (2014) 007 [arXiv:1405.3654] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Schmidt and M. Spira, Higgs Boson Production via Gluon Fusion: Soft-Gluon Resummation including Mass Effects, Phys. Rev. D 93 (2016) 014022 [arXiv:1509.00195] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G. Sterman and M. Zeng, Quantifying Comparisons of Threshold Resummations, JHEP 05 (2014) 132 [arXiv:1312.5397] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Bonvini, S. Forte, G. Ridolfi and L. Rottoli, Resummation prescriptions and ambiguities in SCET vs. direct QCD: Higgs production as a case study, JHEP 01 (2015) 046 [arXiv:1409.0864] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO Computational Techniques: The Cases Hγγ and Hgg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  46. [46]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: Virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  51. [51]
    S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 2. Differential Distributions, arXiv:1201.3084 [INSPIRE].
  52. [52]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  53. [53]
    F. Hautmann, Heavy top limit and double logarithmic contributions to Higgs production at m H2/s much less than 1, Phys. Lett. B 535 (2002) 159 [hep-ph/0203140] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R.D. Ball, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Higgs production in gluon fusion beyond NNLO, Nucl. Phys. B 874 (2013) 746 [arXiv:1303.3590] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    M. Bonvini, R.D. Ball, S. Forte, S. Marzani and G. Ridolfi, Updated Higgs cross section at approximate N 3 LO, J. Phys. G 41 (2014) 095002 [arXiv:1404.3204] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. de Florian, J. Mazzitelli, S. Moch and A. Vogt, Approximate N 3 LO Higgs-boson production cross section using physical-kernel constraints, JHEP 10 (2014) 176 [arXiv:1408.6277] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Anastasiou, S. Buehler, C. Duhr and F. Herzog, NNLO phase space master integrals for two-to-one inclusive cross sections in dimensional regularization, JHEP 11 (2012) 062 [arXiv:1208.3130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    M. Höschele, J. Hoff, A. Pak, M. Steinhauser and T. Ueda, Higgs boson production at the LHC: NNLO partonic cross sections through order ϵ and convolutions with splitting functions to N 3 LO, Phys. Lett. B 721 (2013) 244 [arXiv:1211.6559] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  60. [60]
    S. Buehler and A. Lazopoulos, Scale dependence and collinear subtraction terms for Higgs production in gluon fusion at N3LO, JHEP 10 (2013) 096 [arXiv:1306.2223] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  65. [65]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  66. [66]
    C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real contribution to inclusive Higgs production at N 3 LO, JHEP 02 (2015) 077 [arXiv:1411.3587] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    F. Dulat and B. Mistlberger, Real-Virtual-Virtual contributions to the inclusive Higgs cross section at N3LO, arXiv:1411.3586 [INSPIRE].
  68. [68]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions to the inclusive Higgs cross-section at N 3 LO, JHEP 12 (2013) 088 [arXiv:1311.1425] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    W.B. Kilgore, One-loop single-real-emission contributions to ppH + X at next-to-next-to-next-to-leading order, Phys. Rev. D 89 (2014) 073008 [arXiv:1312.1296] [INSPIRE].ADSGoogle Scholar
  70. [70]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].ADSGoogle Scholar
  71. [71]
    C. Anastasiou, L.J. Dixon and K. Melnikov, NLO Higgs boson rapidity distributions at hadron colliders, Nucl. Phys. Proc. Suppl. 116 (2003) 193 [hep-ph/0211141] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  76. [76]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  77. [77]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    C. Anzai et al., Exact N 3 LO results for qq′ → H + X, JHEP 07 (2015) 140 [arXiv:1506.02674] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  82. [82]
    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, N 3 LO Higgs boson and Drell-Yan production at threshold: The one-loop two-emission contribution, Phys. Rev. D 90 (2014) 053006 [arXiv:1404.5839] [INSPIRE].ADSGoogle Scholar
  85. [85]
    Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, Soft-virtual corrections to Higgs production at N 3 LO, Phys. Rev. D 91 (2015) 036008 [arXiv:1412.2771] [INSPIRE].ADSGoogle Scholar
  86. [86]
    C. Anastasiou et al., Higgs boson gluon-fusion production beyond threshold in N 3 LO QCD, JHEP 03 (2015) 091 [arXiv:1411.3584] [INSPIRE].CrossRefGoogle Scholar
  87. [87]
    C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, F. Herzog and B. Mistlberger, Soft expansion of double-real-virtual corrections to Higgs production at N 3 LO, JHEP 08 (2015) 051 [arXiv:1505.04110] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production, Nucl. Phys. B 454 (1995) 253 [hep-ph/9506452] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    R. Akhoury, M.G. Sotiropoulos and V.I. Zakharov, The KLN theorem and soft radiation in gauge theories: Abelian case, Phys. Rev. D 56 (1997) 377 [hep-ph/9702270] [INSPIRE].ADSGoogle Scholar
  90. [90]
    A. Denner et al., Standard Model input parameters for Higgs physics, LHCHXSWG-INT-2015-006.
  91. [91]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    F. Herzog and B. Mistlberger, The Soft-Virtual Higgs Cross-section at N3LO and the Convergence of the Threshold Expansion, arXiv:1405.5685 [INSPIRE].
  94. [94]
    F. Dulat and B. Mistlberger, Real-Virtual-Virtual contributions to the inclusive Higgs cross section at N3LO, arXiv:1411.3586 [INSPIRE].
  95. [95]
    S. Forte, A. Isgrò and G. Vita, Do we need N 3 LO Parton Distributions?, Phys. Lett. B 731 (2014) 136 [arXiv:1312.6688] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    J.A.M. Vermaseren, A. Vogt and S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  97. [97]
    G. Soar, S. Moch, J.A.M. Vermaseren and A. Vogt, On Higgs-exchange DIS, physical evolution kernels and fourth-order splitting functions at large x, Nucl. Phys. B 832 (2010) 152 [arXiv:0912.0369] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  98. [98]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    T. Ahmed, M. Mahakhud, N. Rana and V. Ravindran, Drell-Yan Production at Threshold to Third Order in QCD, Phys. Rev. Lett. 113 (2014) 112002 [arXiv:1404.0366] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    S. Catani and L. Trentadue, Comment on QCD exponentiation at large x, Nucl. Phys. B 353 (1991) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].ADSGoogle Scholar
  103. [103]
    T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].ADSGoogle Scholar
  105. [105]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].ADSGoogle Scholar
  106. [106]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Updated Predictions for Higgs Production at the Tevatron and the LHC, Phys. Lett. B 698 (2011) 271 [arXiv:1008.3162] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M. Bonvini and L. Rottoli, Three loop soft function for N 3 LLgluon fusion Higgs production in soft-collinear effective theory, Phys. Rev. D 91 (2015) 051301 [arXiv:1412.3791] [INSPIRE].ADSGoogle Scholar
  108. [108]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization Group for the Infrared Asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    R. Mueller and D.G. Oeztuerk, On the computation of finite bottom-quark mass effects in Higgs boson production, arXiv:1512.08570 [INSPIRE].
  112. [112]
    P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop relation between the MS and on-shell quark mass, arXiv:1601.03748 [INSPIRE].
  113. [113]
    P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark Mass Relations to Four-Loop Order in Perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    S. Alekhin, J. Blumlein and S. Moch, The ABM parton distributions tuned to LHC data, Phys. Rev. D 89 (2014) 054028 [arXiv:1310.3059] [INSPIRE].ADSGoogle Scholar
  117. [117]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  118. [118]
    P. Jimenez-Delgado and E. Reya, Delineating parton distributions and the strong coupling, Phys. Rev. D 89 (2014) 074049 [arXiv:1403.1852] [INSPIRE].ADSGoogle Scholar
  119. [119]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  121. [121]
    ZEUS, H1 collaborations, H. Abramowicz et al., Combination of measurements of inclusive deep inelastic e ± p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].
  122. [122]
    J.F. Owens, A. Accardi and W. Melnitchouk, Global parton distributions with nuclear and finite-Q 2 corrections, Phys. Rev. D 87 (2013) 094012 [arXiv:1212.1702] [INSPIRE].ADSGoogle Scholar
  123. [123]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  124. [124]
    H.-L. Lai et al., Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions, Phys. Rev. D 82 (2010) 054021 [arXiv:1004.4624] [INSPIRE].ADSGoogle Scholar
  125. [125]
    C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  126. [126]
    C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Inclusive Higgs boson cross-section for the LHC at 8 TeV, JHEP 04 (2012) 004 [arXiv:1202.3638] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    J. Baglio and A. Djouadi, Predictions for Higgs production at the Tevatron and the associated uncertainties, JHEP 10 (2010) 064 [arXiv:1003.4266] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun. 170 (2005) 65 [hep-ph/0408244] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Charalampos Anastasiou
    • 1
  • Claude Duhr
    • 2
    • 3
  • Falko Dulat
    • 1
  • Elisabetta Furlan
    • 1
  • Thomas Gehrmann
    • 4
  • Franz Herzog
    • 5
  • Achilleas Lazopoulos
    • 1
  • Bernhard Mistlberger
    • 2
  1. 1.Institute for Theoretical PhysicsETH ZürichZürichSwitzerland
  2. 2.Theoretical Physics DepartmentCERNGenevaSwitzerland
  3. 3.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-La-NeuveBelgium
  4. 4.Physik-InstitutUniversität ZürichZürichSwitzerland
  5. 5.NikhefAmsterdamThe Netherlands

Personalised recommendations