Advertisement

Black hole microstates in AdS4 from supersymmetric localization

  • Francesco BeniniEmail author
  • Kiril Hristov
  • Alberto Zaffaroni
Open Access
Regular Article - Theoretical Physics

Abstract

This paper addresses a long standing problem, the counting of the microstates of supersymmetric asymptotically AdS black holes in terms of a holographically dual field theory. We focus on a class of asymptotically AdS4 static black holes preserving two real supercharges which are dual to a topologically twisted deformation of the ABJM theory. We evaluate in the large N limit the topologically twisted index of the ABJM theory and we show that it correctly reproduces the entropy of the AdS4 black holes. An extremization of the index with respect to a set of chemical potentials is required. We interpret it as the selection of the exact R-symmetry of the superconformal quantum mechanics describing the horizon of the black hole.

Keywords

AdS-CFT Correspondence Black Holes Nonperturbative Effects Supersymmetric gauge theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    L. Grant, P.A. Grassi, S. Kim and S. Minwalla, Comments on 1/16 BPS quantum states and classical configurations, JHEP 05 (2008) 049 [arXiv:0803.4183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdS D−2 × S 2 to AdS D , Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Klemm, Rotating BPS black holes in matter-coupled AdS 4 supergravity, JHEP 07 (2011) 019 [arXiv:1103.4699] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and electric AdS solutions in string-and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Donos and J.P. Gauntlett, Supersymmetric quantum criticality supported by baryonic charges, JHEP 10 (2012) 120 [arXiv:1208.1494] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Halmagyi, M. Petrini and A. Zaffaroni, BPS black holes in AdS 4 from M-theory, JHEP 08 (2013) 124 [arXiv:1305.0730] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Halmagyi, BPS black hole horizons in N = 2 gauged supergravity, JHEP 02 (2014) 051 [arXiv:1308.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Katmadas, Static BPS black holes in U(1) gauged supergravity, JHEP 09 (2014) 027 [arXiv:1405.4901] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    N. Halmagyi, Static BPS black holes in AdS 4 with general dyonic charges, JHEP 03 (2015) 032 [arXiv:1408.2831] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Gukov and D. Pei, Equivariant Verlinde formula from fivebranes and vortices, arXiv:1501.01310 [INSPIRE].
  20. [20]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-matrix models and tri-Sasaki Einstein spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  21. [21]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    E. Barnes, K.A. Intriligator, B. Wecht and J. Wright, Evidence for the strongest version of the 4d a-theorem, via a-maximization along RG flows, Nucl. Phys. B 702 (2004) 131 [hep-th/0408156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    L.C. Jeffrey and F.C. Kirwan, Localization for non-Abelian group actions, Topology 34 (1995) 291 [alg-geom/9307001].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M.K. Benna, I.R. Klebanov and T. Klose, Charges of monopole operators in Chern-Simons Yang-Mills theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    H. Nieder and Y. Oz, Supergravity and D-branes wrapping special Lagrangian cycles, JHEP 03 (2001) 008 [hep-th/0011288] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    J.P. Gauntlett, N. Kim, S. Pakis and D. Waldram, Membranes wrapped on holomorphic curves, Phys. Rev. D 65 (2002) 026003 [hep-th/0105250] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    M. Naka, Various wrapped branes from gauged supergravities, hep-th/0206141 [INSPIRE].
  33. [33]
    J.P. Gauntlett, Branes, calibrations and supergravity, in Strings and geometry. Proceedings, Summer School, Cambridge U.K. March 24-April 20 2002, pg. 79 [hep-th/0305074] [INSPIRE].
  34. [34]
    N. Kim, AdS 3 solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094 [hep-th/0511029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J.P. Gauntlett and O.A.P. Mac Conamhna, AdS spacetimes from wrapped D3-branes, Class. Quant. Grav. 24 (2007) 6267 [arXiv:0707.3105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Katmadas and A. Tomasiello, AdS 4 black holes from M-theory, JHEP 12 (2015) 111 [arXiv:1509.00474] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    K. Hristov, A. Tomasiello and A. Zaffaroni, Supersymmetry on three-dimensional Lorentzian curved spaces and black hole holography, JHEP 05 (2013) 057 [arXiv:1302.5228] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    K. Hristov, C. Toldo and S. Vandoren, Phase transitions of magnetic AdS 4 black holes with scalar hair, Phys. Rev. D 88 (2013) 026019 [arXiv:1304.5187] [INSPIRE].ADSGoogle Scholar
  43. [43]
    K. Hristov, On BPS bounds in D = 4 N = 2 gauged supergravity II: general matter couplings and black hole masses, JHEP 03 (2012) 095 [arXiv:1112.4289] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].ADSzbMATHGoogle Scholar
  45. [45]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S. Sethi and M. Stern, D-brane bound states redux, Commun. Math. Phys. 194 (1998) 675 [hep-th/9705046] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    J. Michelson and A. Strominger, The geometry of (super)conformal quantum mechanics, Commun. Math. Phys. 213 (2000) 1 [hep-th/9907191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    R. Britto-Pacumio, A. Strominger and A. Volovich, Two black hole bound states, JHEP 03 (2001) 050 [hep-th/0004017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    R. Britto-Pacumio, J. Michelson, A. Strominger and A. Volovich, Lectures on superconformal quantum mechanics and multi-black hole moduli spaces, NATO Sci. Ser. C 564 (2001) 235 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  50. [50]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons theories and M 2 branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    A. Hanany, D. Vegh and A. Zaffaroni, Brane tilings and M 2 branes, JHEP 03 (2009) 012 [arXiv:0809.1440] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS 4 /CFT 3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    M. Aganagic, A stringy origin of M 2 brane Chern-Simons theories, Nucl. Phys. B 835 (2010) 1 [arXiv:0905.3415] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M 2-branes at toric CY 4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    F. Benini, C. Closset and S. Cremonesi, Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS 4 /CFT 3, JHEP 09 (2011) 005 [arXiv:1105.2299] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    A. Dabholkar, J. Gomes, S. Murthy and A. Sen, Supersymmetric index from black hole entropy, JHEP 04 (2011) 034 [arXiv:1009.3226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465 [arXiv:1305.0533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of 2d N = 2 gauge theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    K. Hori, H. Kim and P. Yi, Witten index and wall crossing, JHEP 01 (2015) 124 [arXiv:1407.2567] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    M. Ademollo et al., Supersymmetric strings and color confinement, Phys. Lett. B 62 (1976) 105 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    R.A. Coles and G. Papadopoulos, The geometry of the one-dimensional supersymmetric nonlinear σ-models, Class. Quant. Grav. 7 (1990) 427 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Francesco Benini
    • 1
    • 2
    Email author
  • Kiril Hristov
    • 3
  • Alberto Zaffaroni
    • 4
    • 5
  1. 1.Blackett Laboratory, Imperial College LondonLondonU.K.
  2. 2.International School for Advanced Studies (SISSA)TriesteItaly
  3. 3.Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of SciencesSofiaBulgaria
  4. 4.Dipartimento di Fisica, Università di Milano-BicoccaMilanoItaly
  5. 5.INFN, sezione di Milano-BicoccaMilanoItaly

Personalised recommendations