Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD

  • Olga Bessidskaia Bylund
  • Fabio Maltoni
  • Ioannis Tsinikos
  • Eleni Vryonidou
  • Cen Zhang
Open Access
Regular Article - Theoretical Physics


Top quark pair production in association with a Z-boson or a photon at the LHC directly probes neutral top-quark couplings. We present predictions for these two processes in the Standard Model (SM) Effective Field Theory (EFT) at next-to-leading order (NLO) in QCD. We include the full set of CP-even dimension-six operators that enter the top-quark interactions with the SM gauge bosons. For comparison, we also present predictions in the SMEFT for top loop-induced HZ production at the LHC and for \( t\overline{t} \) production at the ILC at NLO in QCD. Results for total cross sections and differential distributions are obtained and uncertainties coming from missing higher orders in the strong coupling and in the EFT expansions are discussed. NLO results matched to the parton shower are available, allowing for event generation to be directly employed in an experimental analyses. Our framework provides a solid basis for the interpretation of current and future measurements in the SMEFT, with improved accuracy and precision.


Beyond Standard Model Effective field theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    CDF collaboration, T. Aaltonen et al., Evidence for \( t\overline{t}\gamma \) production and measurement of \( {\sigma}_{t\overline{t}\gamma }/{\sigma}_{t\overline{t}} \), Phys. Rev. D 84 (2011) 031104 [arXiv:1106.3970] [INSPIRE].
  2. [2]
    CMS collaboration, Measurement of the inclusive top-quark pair + photon production cross section in the muon + jets channel in pp collisions at 8 TeV, CMS-PAS-TOP-13-011, CERN, Geneva Switzerland (2013).
  3. [3]
    ATLAS collaboration, Observation of top-quark pair production in association with a photon and measurement of the \( t\overline{t}\gamma \) production cross section in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 91 (2015) 072007 [arXiv:1502.00586] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of top quark-antiquark pair production in association with a W or Z boson in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3060 [arXiv:1406.7830] [INSPIRE].
  5. [5]
    CMS collaboration, Observation of top quark pairs produced in association with a vector boson in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2016) 096 [arXiv:1510.01131] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurement of the \( t\overline{t}W \) and \( t\overline{t}Z \) production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2015) 172 [arXiv:1509.05276] [INSPIRE].
  7. [7]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.N. Leung, S.T. Love and S. Rao, Low-energy manifestations of a new interaction scale: operator analysis, Z. Phys. C 31 (1986) 433 [INSPIRE].ADSGoogle Scholar
  10. [10]
    G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Buckley et al., Global fit of top quark effective theory to data, Phys. Rev. D 92 (2015) 091501 [arXiv:1506.08845] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD, Phys. Rev. D 88 (2013) 054005 [arXiv:1305.7386] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev. D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev. D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Zhang, Single top production at next-to-leading order in the standard model effective field theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson in \( t\overline{t} \) + Z production at the LHC, JHEP 07 (2014) 091 [Erratum ibid. 09 (2015) 132] [arXiv:1404.1005] [INSPIRE].
  19. [19]
    R. Röntsch and M. Schulze, Probing top-Z dipole moments at the LHC and ILC, JHEP 08 (2015) 044 [arXiv:1501.05939] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Zhang, Automating predictions for standard model effective field theory in MadGraph5 aMC@NLO, arXiv:1601.03994 [INSPIRE].
  22. [22]
    J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B 812 (2009) 181 [arXiv:0811.3842] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.A. Aguilar-Saavedra, B. Fuks and M.L. Mangano, Pinning down top dipole moments with ultra-boosted tops, Phys. Rev. D 91 (2015) 094021 [arXiv:1412.6654] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Tonero and R. Rosenfeld, Dipole-induced anomalous top quark couplings at the LHC, Phys. Rev. D 90 (2014) 017701 [arXiv:1404.2581] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Zhang, N. Greiner and S. Willenbrock, Constraints on non-standard top quark couplings, Phys. Rev. D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].ADSGoogle Scholar
  29. [29]
    N. Greiner, S. Willenbrock and C. Zhang, Effective field theory for nonstandard top quark couplings, Phys. Lett. B 704 (2011) 218 [arXiv:1104.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. de Blas, M. Chala and J. Santiago, Renormalization group constraints on new top interactions from electroweak precision data, JHEP 09 (2015) 189 [arXiv:1507.00757] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C. Degrande, Automatic evaluation of UV and R 2 terms for beyond the standard model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Preskill, Gauge anomalies in an effective field theory, Annals Phys. 210 (1991) 323 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Maltoni, D. Pagani and I. Tsinikos, Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on ttH searches at the LHC, JHEP 02 (2016) 113 [arXiv:1507.05640] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, JHEP 06 (2015) 184 [arXiv:1504.03446] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.A. Dror, M. Farina, E. Salvioni and J. Serra, Strong tW scattering at the LHC, JHEP 01 (2016) 071 [arXiv:1511.03674] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    B. Hespel, F. Maltoni and E. Vryonidou, Higgs and Z boson associated production via gluon fusion in the SM and the 2HDM, JHEP 06 (2015) 065 [arXiv:1503.01656] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    L. Berthier and M. Trott, Consistent constraints on the standard model effective field theory, JHEP 02 (2016) 069 [arXiv:1508.05060] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    CMS collaboration, Combination of ATLAS and CMS top quark pair cross section measurements in the emu final state using proton-proton collisions at 8 TeV, CMS-PAS-TOP-14-016, CERN, Geneva Switzerland (2014).
  55. [55]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Olga Bessidskaia Bylund
    • 1
  • Fabio Maltoni
    • 2
  • Ioannis Tsinikos
    • 2
  • Eleni Vryonidou
    • 2
  • Cen Zhang
    • 3
  1. 1.Oskar Klein Centre and Department of PhysicsStockholm UniversityStockholmSweden
  2. 2.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Department of PhysicsBrookhaven National LaboratoryUptonU.S.A.

Personalised recommendations