Extending the Minlo method

Abstract

We consider improving Powheg+Minlo simulations, so as to also render them NLO accurate in the description of observables receiving contributions from events with lower parton multiplicity than present in their underlying NLO calculation. On a conceptual level we follow the strategy of the so-called Minlo programs. Whereas the existing Minlo framework requires explicit analytic input from higher order resummation, here we derive an effective numerical approximation to these ingredients, by imposing unitarity. This offers a way of extending the Minlo method to more complex processes, complementary to the known route which uses explicit computations of high-accuracy resummation inputs. Specifically, we have focused on Higgs-plus-two-jet production (Hjj) and related processes. We also consider how one can cover three units of multiplicity at NLO accuracy, i.e. we consider how the Hjj-Minlo simulation may yield NLO accuracy for inclusive H, Hj and Hjj quantities. We perform a feasibility study assessing the potential of these ideas.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

  2. [2]

    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

  3. [3]

    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  4. [4]

    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  5. [5]

    S. Plätzer and S. Gieseke, Dipole showers and automated NLO matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].

    Article  ADS  Google Scholar 

  6. [6]

    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].

    Article  ADS  Google Scholar 

  7. [7]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  8. [8]

    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  9. [9]

    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, aMC@NLO predictions for W jj production at the Tevatron, JHEP 02 (2012) 048 [arXiv:1110.5502] [INSPIRE].

    Article  ADS  Google Scholar 

  10. [10]

    S. Höche, F. Krauss, M. Schönherr and F. Siegert, W + n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett. 110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].

    Article  ADS  Google Scholar 

  11. [11]

    J.M. Campbell, R.K. Ellis, R. Frederix, P. Nason, C. Oleari and C. Williams, NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].

    Article  ADS  Google Scholar 

  12. [12]

    E. Re, NLO corrections merged with parton showers for Z + 2 jets production using the POWHEG method, JHEP 10 (2012) 031 [arXiv:1204.5433] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\overline{b} \) + n jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].

  14. [14]

    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

  15. [15]

    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].

  16. [16]

    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].

  17. [17]

    N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP 09 (2011) 104 [arXiv:1108.0909] [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    T. Gehrmann, S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO QCD matrix elements + parton showers in e + e hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].

    Article  ADS  Google Scholar 

  21. [21]

    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].

    Article  ADS  Google Scholar 

  22. [22]

    S. Alioli et al., Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, JHEP 08 (2013) 114 [arXiv:1211.5467] [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at NNLL’+NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    L. Lönnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers, JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].

    Article  ADS  Google Scholar 

  26. [26]

    K. Hamilton, P. Nason and G. Zanderighi, MINLO: Multi-scale Improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].

    Article  ADS  Google Scholar 

  27. [27]

    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].

  28. [28]

    K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].

    Article  ADS  Google Scholar 

  29. [29]

    K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE].

    Article  ADS  Google Scholar 

  30. [30]

    A. Karlberg, E. Re and G. Zanderighi, NNLOPS accurate Drell-Yan production, JHEP 09 (2014) 134 [arXiv:1407.2940] [INSPIRE].

    Article  ADS  Google Scholar 

  31. [31]

    W. Astill, W. Bizon, E. Re and G. Zanderighi, NNLOPS accurate associated HW production, arXiv:1603.01620 [INSPIRE].

  32. [32]

    R.K. Ellis and S. Veseli, W and Z transverse momentum distributions: resummation in q T space, Nucl. Phys. B 511 (1998) 649 [hep-ph/9706526] [INSPIRE].

  33. [33]

    S. Frixione, P. Nason and G. Ridolfi, Problems in the resummation of soft gluon effects in the transverse momentum distributions of massive vector bosons in hadronic collisions, Nucl. Phys. B 542 (1999) 311 [hep-ph/9809367] [INSPIRE].

  34. [34]

    S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann, J.R. Walsh and S. Zuberi, Matching fully differential NNLO calculations and parton showers, JHEP 06 (2014) 089 [arXiv:1311.0286] [INSPIRE].

    Article  ADS  Google Scholar 

  35. [35]

    P.B. Arnold and R.P. Kauffman, W and Z production at next-to-leading order: from large q T to small, Nucl. Phys. B 349 (1991) 381 [INSPIRE].

    Article  ADS  Google Scholar 

  36. [36]

    D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].

  37. [37]

    C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].

  38. [38]

    A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].

    Article  ADS  Google Scholar 

  39. [39]

    T. Becher and M. Neubert, Factorization and NNLL resummation for Higgs production with a jet veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].

    Article  ADS  Google Scholar 

  40. [40]

    F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation properties of jet vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].

    Article  ADS  Google Scholar 

  42. [42]

    T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p +NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].

    Article  ADS  Google Scholar 

  43. [43]

    A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].

    Article  ADS  Google Scholar 

  44. [44]

    A. Banfi et al., Jet-vetoed Higgs cross section in gluon fusion at N 3 LO+NNLL with small-R resummation, JHEP 04 (2016) 049 [arXiv:1511.02886] [INSPIRE].

    Article  ADS  Google Scholar 

  45. [45]

    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The quark beam function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  47. [47]

    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N -jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  48. [48]

    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].

    Article  ADS  Google Scholar 

  49. [49]

    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The soft function for exclusive N -jet production at hadron colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].

    Article  ADS  Google Scholar 

  51. [51]

    R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].

    Article  ADS  Google Scholar 

  52. [52]

    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N -jettiness subtractions for NNLO QCD calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].

    Article  Google Scholar 

  53. [53]

    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e + e annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].

    Article  ADS  Google Scholar 

  54. [54]

    P. Pietrulewicz, F.J. Tackmann and W.J. Waalewijn, Factorization and resummation for generic hierarchies between jets, arXiv:1601.05088 [INSPIRE].

  55. [55]

    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

  56. [56]

    Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard processes in quantum chromodynamics, Phys. Rept. 58 (1980) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  57. [57]

    A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].

  58. [58]

    A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].

  59. [59]

    A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  60. [60]

    G. Marchesini and B.R. Webber, Simulation of QCD jets including soft gluon interference, Nucl. Phys. B 238 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  61. [61]

    B.R. Webber, A QCD model for jet fragmentation including soft gluon interference, Nucl. Phys. B 238 (1984) 492 [INSPIRE].

    Article  ADS  Google Scholar 

  62. [62]

    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].

    Article  ADS  Google Scholar 

  63. [63]

    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multi-jet cross-sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].

    Article  ADS  Google Scholar 

  64. [64]

    S. Catani, B. Webber and Yu. Dokshitzer, The K clustering algorithm for jets in deep inelastic scattering, Nucl. Phys. Proc. Suppl. 29A (1992) 136 [INSPIRE].

    Article  ADS  Google Scholar 

  65. [65]

    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  66. [66]

    S. Catani, Y.L. Dokshitzer and B.R. Webber, The K perpendicular clustering algorithm for jets in deep inelastic scattering and hadron collisions, Phys. Lett. B 285 (1992) 291 [INSPIRE].

    Article  ADS  Google Scholar 

  67. [67]

    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  68. [68]

    S. Catani, Y.L. Dokshitzer and B.R. Webber, Average number of jets in deep inelastic scattering, Phys. Lett. B 322 (1994) 263 [INSPIRE].

    Article  ADS  Google Scholar 

  69. [69]

    E. Gerwick, S. Schumann, B. Gripaios and B. Webber, QCD jet rates with the inclusive generalized k t algorithms, JHEP 04 (2013) 089 [arXiv:1212.5235] [INSPIRE].

    Article  ADS  Google Scholar 

  70. [70]

    E. Gerwick, Recursive prescription for logarithmic jet rate coefficients, Phys. Rev. D 88 (2013) 094009 [arXiv:1305.6319] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    E. Gerwick and P. Schichtel, Jet properties at high-multiplicity, arXiv:1412.1806 [INSPIRE].

  72. [72]

    A. van Hameren, PARNI for importance sampling and density estimation, Acta Phys. Polon. B 40 (2009) 259 [arXiv:0710.2448] [INSPIRE].

    ADS  Google Scholar 

  73. [73]

    K. Hamilton, P. Nason and G. Zanderighi, Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator, JHEP 05 (2015) 140 [arXiv:1501.04637] [INSPIRE].

    Article  ADS  Google Scholar 

  74. [74]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  75. [75]

    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  77. [77]

    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, The q T spectrum of the Higgs boson at the LHC in QCD perturbation theory, Phys. Lett. B 564 (2003) 65 [hep-ph/0302104] [INSPIRE].

  78. [78]

    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].

  79. [79]

    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].

    Article  Google Scholar 

  80. [80]

    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Higgs boson production at the LHC: transverse momentum resummation effects in the H → 2γ, HW Wℓνℓν and HZZ → 4ℓ decay modes, JHEP 06 (2012) 132 [arXiv:1203.6321] [INSPIRE].

    Article  ADS  Google Scholar 

  81. [81]

    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].

    Article  ADS  Google Scholar 

  82. [82]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-k T jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Keith Hamilton.

Additional information

ArXiv ePrint: 1512.02663

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frederix, R., Hamilton, K. Extending the Minlo method. J. High Energ. Phys. 2016, 42 (2016). https://doi.org/10.1007/JHEP05(2016)042

Download citation

Keywords

  • Jets
  • QCD Phenomenology