Commensurability effects in holographic homogeneous lattices

  • Tomas Andrade
  • Alexander Krikun
Open Access
Regular Article - Theoretical Physics


An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices.” Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities.

However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices.

Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.


Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    A. Donos, B. Goutéraux and E. Kiritsis, Holographic Metals and Insulators with Helical Symmetry, JHEP 09 (2014) 038 [arXiv:1406.6351] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J. C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    G.T. Horowitz and J.E. Santos, General Relativity and the Cuprates, JHEP 06 (2013) 087 [arXiv:1302.6586] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP 01 (2015) 035 [arXiv:1409.6875] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    M. Rangamani, M. Rozali and D. Smyth, Spatial Modulation and Conductivities in Effective Holographic Theories, JHEP 07 (2015) 024 [arXiv:1505.05171] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    J. Erdmenger, B. Herwerth, S. Klug, R. Meyer and K. Schalm, S-Wave Superconductivity in Anisotropic Holographic Insulators, JHEP 05 (2015) 094 [arXiv:1501.07615] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    T. Andrade and S.A. Gentle, Relaxed superconductors, JHEP 06 (2015) 140 [arXiv:1412.6521] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    K.-Y. Kim, K.K. Kim and M. Park, A Simple Holographic Superconductor with Momentum Relaxation, JHEP 04 (2015) 152 [arXiv:1501.00446] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    Y. Ling, P. Liu, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic Superconductor on Q-lattice, JHEP 02 (2015) 059 [arXiv:1410.6761] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator Transition by Holographic Charge Density Waves, Phys. Rev. Lett. 113 (2014) 091602 [arXiv:1404.0777] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
  18. [18]
    Y. Ling, P. Liu, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic Entanglement Entropy Close to Quantum Phase Transitions, arXiv:1502.03661 [INSPIRE].
  19. [19]
    S.A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev. B 91 (2015) 155126 [arXiv:1501.03165] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    A. Lucas and S. Sachdev, Conductivity of weakly disordered strange metals: from conformal to hyperscaling-violating regimes, Nucl. Phys. B 892 (2015) 239 [arXiv:1411.3331] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. [21]
    O. Braun and Y. Kivshar, The Frenkel-Kontorova model: concepts, methods and applications, Springer-Verlag, Berlin Heidelberg (2004).CrossRefzbMATHGoogle Scholar
  22. [22]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].ADSGoogle Scholar
  23. [23]
    H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev. D 86 (2012) 064010 [arXiv:1204.1734] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev. D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. [27]
    N. Jokela, M. Jarvinen and M. Lippert, Gravity dual of spin and charge density waves, JHEP 12 (2014) 083 [arXiv:1408.1397] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    B. Withers, Holographic Checkerboards, JHEP 09 (2014) 102 [arXiv:1407.1085] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  29. [29]
    A. Krikun, Phases of holographic d-wave superconductor, JHEP 10 (2015) 123 [arXiv:1506.05379] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Competing p-wave orders, Class. Quant. Grav. 31 (2014) 055007 [arXiv:1310.5741] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  31. [31]
    J. Erdmenger, X.-H. Ge and D.-W. Pang, Striped phases in the holographic insulator/superconductor transition, JHEP 11 (2013) 027 [arXiv:1307.4609] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    A. Krikun, Charge density wave instability in holographic d-wave superconductor, JHEP 04 (2014) 135 [arXiv:1312.1588] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    V. Ilyina and P. Silaev, Numerical methods for theoretical physicists, Moscow Institute for Computing Research Publ. (2004).Google Scholar
  34. [34]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  35. [35]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  36. [36]
    P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    Y. Bardoux, M.M. Caldarelli and C. Charmousis, Shaping black holes with free fields, JHEP 05 (2012) 054 [arXiv:1202.4458] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP 12 (2014) 170 [arXiv:1409.8346] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP 09 (2015) 090 [arXiv:1505.05092] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  41. [41]
    S.A. Hartnoll and D.M. Hofman, Locally Critical Resistivities from Umklapp Scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes: the art of scientific computing, Cambridge U.K. (1992).Google Scholar
  43. [43]
    L.N. Trefethen, Spectral methods in MATLAB. Vol. 10, Siam (2000).Google Scholar
  44. [44]
    Wolfram Research Inc., Mathematica, Version 10.2, Champaign Illinois U.S.A. (2015).Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  2. 2.Instituut-Lorentz, Universiteit LeidenLeidenThe Netherlands
  3. 3.NORDITA, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden

Personalised recommendations