Precision measurement of the ηπ+ππ0 Dalitz plot distribution with the KLOE detector

  • The KLOE-2 collaboration
  • A. Anastasi
  • D. Babusci
  • G. Bencivenni
  • M. Berlowski
  • C. Bloise
  • F. Bossi
  • P. Branchini
  • A. Budano
  • L. Caldeira Balkeståhl
  • B. Cao
  • F. Ceradini
  • P. Ciambrone
  • F. Curciarello
  • E. Czerwinski
  • G. D’Agostini
  • E. Danè
  • V. De Leo
  • E. De Lucia
  • A. De Santis
  • P. De Simone
  • A. Di Cicco
  • A. Di Domenico
  • R. Di Salvo
  • D. Domenici
  • A. D’Uffizi
  • A. Fantini
  • G. Felici
  • S. Fiore
  • A. Gajos
  • P. Gauzzi
  • G. Giardina
  • S. Giovannella
  • E. Graziani
  • F. Happacher
  • L. Heijkenskjöld
  • W. Ikegami Andersson
  • T. Johansson
  • D. Kaminska
  • W. Krzemien
  • A. Kupsc
  • S. Loffredo
  • G. Mandaglio
  • M. Martini
  • M. Mascolo
  • R. Messi
  • S. Miscetti
  • G. Morello
  • D. Moricciani
  • P. Moskal
  • M. Papenbrock
  • A. Passeri
  • V. Patera
  • E. Perez del Rio
  • A. Ranieri
  • P. Santangelo
  • I. Sarra
  • M. Schioppa
  • M. Silarski
  • F. Sirghi
  • L. Tortora
  • G. Venanzoni
  • W. Wislicki
  • M. Wolke
Open Access
Regular Article - Experimental Physics

Abstract

Using 1.6 fb−1 of e+eϕηγ data collected with the KLOE detector at DAΦNE, the Dalitz plot distribution for the ηπ+ππ0 decay is studied with the world’s largest sample of ∼ 4.7 · 106 events. The Dalitz plot density is parametrized as a polynomial expansion up to cubic terms in the normalized dimensionless variables X and Y . The experiment is sensitive to all charge conjugation conserving terms of the expansion, including a gX2Y term. The statistical uncertainty of all parameters is improved by a factor two with respect to earlier measurements.

Keywords

e+-e- Experiments QCD 

Supplementary material

13130_2016_3902_MOESM1_ESM.zip (4 kb)
ESM 1(ZIP 3 kb)

References

  1. [1]
    D.G. Sutherland, Current algebra and the decay η → 3π, Phys. Lett. 23 (1966) 384 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    J.S. Bell and D.G. Sutherland, Current algebra and η → 3π, Nucl. Phys. B 4 (1968) 315 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    R. Baur, J. Kambor and D. Wyler, Electromagnetic corrections to the decays η → 3π, Nucl. Phys. B 460 (1996) 127 [hep-ph/9510396] [INSPIRE].
  4. [4]
    C. Ditsche, B. Kubis and U.-G. Meißner, Electromagnetic corrections in η → 3π decays, Eur. Phys. J. C 60 (2009) 83 [arXiv:0812.0344] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    J. Bijnens and J. Gasser, Eta decays at and beyond p 4 in chiral perturbation theory, Phys. Scripta T 99 (2002) 34 [hep-ph/0202242] [INSPIRE].
  6. [6]
    H. Leutwyler, The ratios of the light quark masses, Phys. Lett. B 378 (1996) 313 [hep-ph/9602366] [INSPIRE].
  7. [7]
    R.F. Dashen, Chiral SU(3) × SU(3) as a symmetry of the strong interactions, Phys. Rev. 183 (1969) 1245 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    J. Gasser and H. Leutwyler, η → 3π to one loop, Nucl. Phys. B 250 (1985) 539 [INSPIRE].
  9. [9]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  10. [10]
    J. Bijnens and K. Ghorbani, η → 3π at two loops in chiral perturbation theory, JHEP 11 (2007) 030 [arXiv:0709.0230] [INSPIRE].
  11. [11]
    B. Borasoy and R. Nissler, Hadronic η and η decays, Eur. Phys. J. A 26 (2005) 383 [hep-ph/0510384] [INSPIRE].
  12. [12]
    S.P. Schneider, B. Kubis and C. Ditsche, Rescattering effects in η → 3π decays, JHEP 02 (2011) 028 [arXiv:1010.3946] [INSPIRE].MATHADSGoogle Scholar
  13. [13]
    K. Kampf, M. Knecht, J. Novotný and M. Zdráhal, Analytical dispersive construction of η → 3π amplitude: first order in isospin breaking,Phys. Rev. D 84 (2011) 114015 [arXiv:1103.0982] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Colangelo, S. Lanz, H. Leutwyler and E. Passemar, Determination of the light quark masses from η → 3π, PoS(EPS-HEP2011)304 [INSPIRE].
  15. [15]
    P. Guo et al., Three-body final state interaction in η → 3π, Phys. Rev. D 92 (2015) 054016 [arXiv:1505.01715] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Gormley et al., Experimental determination of the Dalitz-plot distribution of the decays ηπ + π π 0 and ηπ + π γ and the branching ratio ηπ + π γ/ηπ +, Phys. Rev. D 2 (1970) 501 [INSPIRE].ADSGoogle Scholar
  17. [17]
    J.G. Layter et al., Study of Dalitz-plot distributions of the decays ηπ + π π 0 and ηπ + π γ, Phys. Rev. D 7 (1973) 2565 [INSPIRE].ADSGoogle Scholar
  18. [18]
    Crystal Barrel collaboration, A. Abele et al., Momentum dependence of the decay ηπ + π π 0, Phys. Lett. B 417 (1998) 197 [INSPIRE].
  19. [19]
    KLOE collaboration, F. Ambrosino et al., Determination of ηπ + π π 0 Dalitz plot slopes and asymmetries with the KLOE detector, JHEP 05 (2008) 006 [arXiv:0801.2642] [INSPIRE].
  20. [20]
    WASA-at-COSY collaboration, P. Adlarson et al., Measurement of the ηπ + π π 0 Dalitz plot distribution, Phys. Rev. C 90 (2014) 045207 [arXiv:1406.2505] [INSPIRE].
  21. [21]
    BESIII collaboration, M. Ablikim et al., Measurement of the matrix elements for the decays ηπ + π π 0 and η/η π 0 π 0 π 0, Phys. Rev. D 92 (2015) 012014 [arXiv:1506.05360] [INSPIRE].
  22. [22]
    J. Kambor, C. Wiesendanger and D. Wyler, Final state interactions and Khuri-Treimanequations in η → 3π decays, Nucl. Phys. B 465 (1996) 215 [hep-ph/9509374] [INSPIRE].
  23. [23]
    M. Adinolfi et al., The tracking detector of the KLOE experiment, Nucl. Instrum. Meth. A 488 (2002) 51 [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    M. Adinolfi et al., The KLOE electromagnetic calorimeter, Nucl. Instrum. Meth. A 482 (2002) 364 [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    KLOE collaboration, M. Adinolfi et al., The trigger system of the KLOE experiment, Nucl. Instrum. Meth. A 492 (2002) 134 [INSPIRE].
  26. [26]
    F. Ambrosino et al., Data handling, reconstruction and simulation for the KLOE experiment, Nucl. Instrum. Meth. A 534 (2004) 403 [physics/0404100] [INSPIRE].
  27. [27]
    M. Gormley et al., Experimental test of C invariance in ηπ + π π 0, Phys. Rev. Lett. 21 (1968) 402 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    J.G. Layter et al., Measurement of the charge asymmetry in the decay ηπ + π π 0, Phys. Rev. Lett. 29 (1972) 316 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    M.R. Jane et al., A measurement of the charge asymmetry in the decay ηπ + π π 0, Phys. Lett. B 48 (1974) 260 [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • The KLOE-2 collaboration
  • A. Anastasi
    • 1
    • 2
  • D. Babusci
    • 2
  • G. Bencivenni
    • 2
  • M. Berlowski
    • 3
  • C. Bloise
    • 2
  • F. Bossi
    • 2
  • P. Branchini
    • 4
  • A. Budano
    • 5
    • 4
  • L. Caldeira Balkeståhl
    • 6
  • B. Cao
    • 6
  • F. Ceradini
    • 5
    • 4
  • P. Ciambrone
    • 2
  • F. Curciarello
    • 1
    • 7
    • 8
  • E. Czerwinski
    • 9
  • G. D’Agostini
    • 10
    • 11
  • E. Danè
    • 2
  • V. De Leo
    • 4
  • E. De Lucia
    • 2
  • A. De Santis
    • 2
  • P. De Simone
    • 2
  • A. Di Cicco
    • 5
    • 4
  • A. Di Domenico
    • 10
    • 11
  • R. Di Salvo
    • 12
  • D. Domenici
    • 2
  • A. D’Uffizi
    • 2
  • A. Fantini
    • 13
    • 12
  • G. Felici
    • 2
  • S. Fiore
    • 14
    • 11
  • A. Gajos
    • 9
  • P. Gauzzi
    • 10
    • 11
  • G. Giardina
    • 1
    • 7
  • S. Giovannella
    • 2
  • E. Graziani
    • 4
  • F. Happacher
    • 2
  • L. Heijkenskjöld
    • 6
  • W. Ikegami Andersson
    • 6
  • T. Johansson
    • 6
  • D. Kaminska
    • 9
  • W. Krzemien
    • 3
  • A. Kupsc
    • 6
  • S. Loffredo
    • 5
    • 4
  • G. Mandaglio
    • 15
    • 16
  • M. Martini
    • 2
    • 17
  • M. Mascolo
    • 2
  • R. Messi
    • 13
    • 12
  • S. Miscetti
    • 2
  • G. Morello
    • 2
  • D. Moricciani
    • 12
  • P. Moskal
    • 9
  • M. Papenbrock
    • 6
  • A. Passeri
    • 4
  • V. Patera
    • 18
    • 11
  • E. Perez del Rio
    • 2
  • A. Ranieri
    • 19
  • P. Santangelo
    • 2
  • I. Sarra
    • 2
  • M. Schioppa
    • 20
    • 21
  • M. Silarski
    • 2
  • F. Sirghi
    • 2
  • L. Tortora
    • 4
  • G. Venanzoni
    • 2
  • W. Wislicki
    • 3
  • M. Wolke
    • 6
  1. 1.Dipartimento di Fisica e Scienze della Terra dell’Università di MessinaMessinaItaly
  2. 2.Laboratori Nazionali di Frascati dell’INFNFrascatiItaly
  3. 3.National Centre for Nuclear ResearchWarsawPoland
  4. 4.INFN Sezione di Roma TreRomaItaly
  5. 5.Dipartimento di Matematica e Fisica dell’Università “Roma Tre”RomaItaly
  6. 6.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  7. 7.INFN Sezione di CataniaCataniaItaly
  8. 8.Novosibirsk State UniversityNovosibirskRussia
  9. 9.Institute of PhysicsJagiellonian UniversityCracowPoland
  10. 10.Dipartimento di Fisica dell’Università “Sapienza”RomaItaly
  11. 11.INFN Sezione di RomaRomaItaly
  12. 12.INFN Sezione di Roma Tor VergataRomaItaly
  13. 13.Dipartimento di Fisica dell’Università “Tor Vergata”RomaItaly
  14. 14.ENEA UTTMAT-IRR, Casaccia R.C.RomaItaly
  15. 15.Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell’Università di MessinaMessinaItaly
  16. 16.INFN Gruppo collegato di MessinaMessinaItaly
  17. 17.Dipartimento di Scienze e Tecnologie applicateUniversità “Guglielmo Marconi”RomaItaly
  18. 18.Dipartimento di Scienze di Base ed Applicate per l’Ingegneria dell’Università “Sapienza”RomaItaly
  19. 19.INFN Sezione di BariBariItaly
  20. 20.Dipartimento di Fisica dell’Università della CalabriaRendeItaly
  21. 21.INFN Gruppo collegato di CosenzaRendeItaly

Personalised recommendations