Advertisement

One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization

  • S. S. Aleshin
  • A. E. Kazantsev
  • M. B. Skoptsov
  • K. V. StepanyantzEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We consider a general non-Abelian renormalizable \( \mathcal{N} \) = 1 supersymmetric gauge theory, regularized by higher covariant derivatives without breaking the BRST invariance, and calculate one-loop divergences for a general form of higher derivative regulator and of the gauge fixing term. It is demonstrated that the momentum integrals giving the one-loop β-function are integrals of double total derivatives independently of a particular choice of the higher derivative term. Evaluating them we reproduce the well-known result for the one-loop β-function. Also we find that the three-point ghost vertices with a single line of the quantum gauge superfield are not renormalized in the considered approximation.

Keywords

Renormalization Regularization and Renormalons Supersymmetric gauge theory Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.T. Grisaru, W. Siegel and M. Roček, Improved Methods for Supergraphs, Nucl. Phys. B 159 (1979) 429 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    D.R.T. Jones, More on the Axial Anomaly in Supersymmetric Yang-Mills Theory, Phys. Lett. B 123 (1983) 45 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, The beta function in supersymmetric gauge theories. Instantons versus traditional approach, Phys. Lett. B 166 (1986) 329 [Sov. J. Nucl. Phys. 43 (1986) 294] [Yad. Fiz. 43 (1986) 459] [INSPIRE].
  5. [5]
    M.A. Shifman and A.I. Vainshtein, Solution of the Anomaly Puzzle in SUSY Gauge Theories and the Wilson Operator Expansion, Nucl. Phys. B 277 (1986) 456 [Sov. Phys. JETP 64 (1986) 428] [Zh. Eksp. Teor. Fiz. 91 (1986) 723] [INSPIRE].
  6. [6]
    A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Gell-mann-low Function In Supersymmetric Electrodynamics, JETP Lett. 42 (1985) 224 [Pisma Zh. Eksp. Teor. Fiz. 42 (1985) 182] [INSPIRE].
  7. [7]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-mann-low Function In Supersymmetric Electrodynamics, Phys. Lett. B 166 (1986) 334 [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    M.A. Shifman and A.I. Vainshtein, Instantons versus supersymmetry: Fifteen years later, in M.A. Shifman, ITEP lectures on particle physics and field theory. Volume 2, World Scientific Publishing Co Pte Ltd (1999), pp. 485-647, [hep-th/9902018] [INSPIRE].
  9. [9]
    N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  10. [10]
    E. Kraus, C. Rupp and K. Sibold, Supersymmetric Yang-Mills theories with local coupling: The Supersymmetric gauge, Nucl. Phys. B 661 (2003) 83 [hep-th/0212064] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  11. [11]
    L.V. Avdeev and O.V. Tarasov, The Three Loop β-function in the N = 1, N = 2, N = 4 Supersymmetric Yang-Mills Theories, Phys. Lett. B 112 (1982) 356 [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    I. Jack, D.R.T. Jones and C.G. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [INSPIRE].
  13. [13]
    I. Jack, D.R.T. Jones and C.G. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 [hep-ph/9609325] [INSPIRE].
  14. [14]
    R.V. Harlander, D.R.T. Jones, P. Kant, L. Mihaila and M. Steinhauser, Four-loop β-function and mass anomalous dimension in dimensional reduction, JHEP 12 (2006) 024 [hep-ph/0610206] [INSPIRE].
  15. [15]
    I. Jack, D.R.T. Jones, P. Kant and L. Mihaila, The Four-loop DRED gauge β-function and fermion mass anomalous dimension for general gauge groups, JHEP 09 (2007) 058 [arXiv:0707.3055] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    L. Mihaila, Precision Calculations in Supersymmetric Theories, Adv. High Energy Phys. 2013 (2013) 607807 [arXiv:1310.6178] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    I. Jack, D.R.T. Jones and A. Pickering, The Connection between DRED and NSVZ, Phys. Lett. B 435 (1998) 61 [hep-ph/9805482] [INSPIRE].
  19. [19]
    D. Kutasov and A. Schwimmer, Lagrange multipliers and couplings in supersymmetric field theory, Nucl. Phys. B 702 (2004) 369 [hep-th/0409029] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  20. [20]
    A.L. Kataev and K.V. Stepanyantz, The NSVZ β-function in supersymmetric theories with different regularizations and renormalization prescriptions, Theor. Math. Phys. 181 (2014) 1531 [arXiv:1405.7598] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A.L. Kataev and K.V. Stepanyantz, Scheme independent consequence of the NSVZ relation for N = 1 SQED with N f flavors, Phys. Lett. B 730 (2014) 184 [arXiv:1311.0589] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    A.A. Slavnov, Invariant regularization of nonlinear chiral theories, Nucl. Phys. B 31 (1971) 301 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  23. [23]
    A.A. Slavnov, Invariant regularization of gauge theories (in Russian), Teor. Mat. Fiz. 13 (1972) 174 [Theor. Math. Phys. 13 (1972) 1064] [INSPIRE].
  24. [24]
    W. Siegel, Inconsistency of Supersymmetric Dimensional Regularization, Phys. Lett. B 94 (1980) 37 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    L.V. Avdeev, G.A. Chochia and A.A. Vladimirov, On the Scope of Supersymmetric Dimensional Regularization, Phys. Lett. B 105 (1981) 272 [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    L.V. Avdeev and A.A. Vladimirov, Dimensional Regularization and Supersymmetry, Nucl. Phys. B 219 (1983) 262 [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    L.V. Avdeev, Noninvariance of Regularization by Dimensional Reduction: An Explicit Example of Supersymmetry Breaking, Phys. Lett. B 117 (1982) 317 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    V.N. Velizhanin, Three-loop renormalization of the N = 1, N = 2, N = 4 supersymmetric Yang-Mills theories, Nucl. Phys. B 818 (2009) 95 [arXiv:0809.2509] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  29. [29]
    V.K. Krivoshchekov, Invariant Regularizations for Supersymmetric Gauge Theories, Theor. Math. Phys. 36 (1978) 745 [Teor. Mat. Fiz. 36 (1978) 291] [INSPIRE].
  30. [30]
    P.C. West, Higher Derivative Regulation of Supersymmetric Theories, Nucl. Phys. B 268 (1986) 113 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    V.K. Krivoshchekov, Invariant Regularization For N = 2 Superfield Perturbation Theory, Phys. Lett. B 149 (1984) 128 [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    I.L. Buchbinder and K.V. Stepanyantz, The higher derivative regularization and quantum corrections in N = 2 supersymmetric theories, Nucl. Phys. B 883 (2014) 20 [arXiv:1402.5309] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  33. [33]
    I.L. Buchbinder, N.G. Pletnev and K.V. Stepanyantz, Manifestly N = 2 supersymmetric regularization for N = 2 supersymmetric field theories, Phys. Lett. B 751 (2015) 434 [arXiv:1509.08055] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED, regularized by higher derivatives, by direct summation of Feynman diagrams, Nucl. Phys. B 852 (2011) 71 [arXiv:1102.3772] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  35. [35]
    K.V. Stepanyantz, The NSVZ β-function and the Schwinger-Dyson equations for \( \mathcal{N} \) = 1 SQED with N f flavors, regularized by higher derivatives, JHEP 08 (2014) 096 [arXiv:1404.6717] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    A.L. Kataev and K.V. Stepanyantz, NSVZ scheme with the higher derivative regularization for \( \mathcal{N} \) = 1 SQED, Nucl. Phys. B 875 (2013) 459 [arXiv:1305.7094] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  37. [37]
    N.N. Bogolyubov and D.V. Shirkov, Introduction To The Theory Of Quantized Fields, Intersci. Monogr. Phys. Astron. 3 (1959) 1 [INSPIRE].zbMATHGoogle Scholar
  38. [38]
    A.A. Soloshenko and K.V. Stepanyantz, Three loop β-function for N = 1 supersymmetric electrodynamics, regularized by higher derivatives, Theor. Math. Phys. 140 (2004) 1264 [Teor. Mat. Fiz. 140 (2004) 430] [hep-th/0304083] [INSPIRE].
  39. [39]
    A.V. Smilga and A. Vainshtein, Background field calculations and nonrenormalization theorems in 4-D supersymmetric gauge theories and their low-dimensional descendants, Nucl. Phys. B 704 (2005) 445 [hep-th/0405142] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  40. [40]
    A.E. Kazantsev and K.V. Stepanyantz, Relation between two-point Green’s functions of \( \mathcal{N} \) =1 SQED with N f flavors, regularized by higher derivatives, in the three-loop approximation, J. Exp. Theor. Phys. 120 (2015) 618 [arXiv:1410.1133] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    S.L. Adler, Some simple vacuum-polarization phenomenology: e + e hadrons; the muonic-atom x-ray discrepancy and g μ − 2, Phys. Rev. D 10 (1974) 3714 [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Shifman and K.V. Stepanyantz, Exact Adler Function in Supersymmetric QCD, Phys. Rev. Lett. 114 (2015) 051601 [arXiv:1412.3382] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    M. Shifman and K.V. Stepanyantz, Derivation of the exact expression for the D function in N =1 SQCD, Phys. Rev. D 91 (2015) 105008 [arXiv:1502.06655] [INSPIRE].
  44. [44]
    A.B. Pimenov, E.S. Shevtsova and K.V. Stepanyantz, Calculation of two-loop β-function for general N = 1 supersymmetric Yang-Mills theory with the higher covariant derivative regularization, Phys. Lett. B 686 (2010) 293 [arXiv:0912.5191] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    K.V. Stepanyantz, Higher covariant derivative regularization for calculations in supersymmetric theories, Proc. Steklov Inst. Math. 272 (2011) 256.CrossRefGoogle Scholar
  46. [46]
    K.V. Stepanyantz, Factorization of integrals defining the two-loop β-function for the general renormalizable N = 1 SYM theory, regularized by the higher covariant derivatives, into integrals of double total derivatives, arXiv:1108.1491 [INSPIRE].
  47. [47]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED regularized by higher derivatives by summation of Feynman diagrams, J. Phys. Conf. Ser. 343 (2012) 012115 [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    K.V. Stepanyantz, Multiloop calculations in supersymmetric theories with the higher covariant derivative regularization, J. Phys. Conf. Ser. 368 (2012) 012052 [arXiv:1203.5525] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    C. Becchi, A. Rouet and R. Stora, Renormalization of the Abelian Higgs-Kibble Model, Commun. Math. Phys. 42 (1975) 127 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    I.V. Tyutin, Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism, LEBEDEV-75-39 [arXiv:0812.0580] [INSPIRE].
  51. [51]
    A.A. Slavnov, Universal gauge invariant renormalization, Phys. Lett. B 518 (2001) 195 [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  52. [52]
    A.A. Slavnov, Regularization-independent gauge-invariant renormalization of the Yang-Mills theory, Theor. Math. Phys. 130 (2002) 1 [Teor. Mat. Fiz. 130 (2002) 3] [INSPIRE].
  53. [53]
    A.A. Slavnov and K.V. Stepanyantz, Universal invariant renormalization for supersymmetric theories, Theor. Math. Phys. 135 (2003) 673 [Teor. Mat. Fiz. 135 (2003) 265] [hep-th/0208006] [INSPIRE].
  54. [54]
    A.A. Slavnov and K.V. Stepanyantz, Universal invariant renormalization of supersymmetric Yang-Mills theory, Theor. Math. Phys. 139 (2004) 599 [Teor. Mat. Fiz. 139 (2004) 179] [hep-th/0305128] [INSPIRE].
  55. [55]
    J.C. Taylor, Ward Identities and Charge Renormalization of the Yang-Mills Field, Nucl. Phys. B 33 (1971) 436 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  56. [56]
    A.A. Slavnov, Ward Identities in Gauge Theories, Theor. Math. Phys. 10 (1972) 99 [Teor. Mat. Fiz. 10 (1972) 153] [INSPIRE].
  57. [57]
    P.I. Pronin and K.V. Stepanyantz, One loop counterterms for higher derivative regularized Lagrangians, Phys. Lett. B 414 (1997) 117 [hep-th/9707008] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  58. [58]
    C.P. Martin and F. Ruiz Ruiz, Higher covariant derivative Pauli-Villars regularization does not lead to a consistent QCD, Nucl. Phys. B 436 (1995) 545 [hep-th/9410223] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    M. Asorey and F. Falceto, On the consistency of the regularization of gauge theories by high covariant derivatives, Phys. Rev. D 54 (1996) 5290 [hep-th/9502025] [INSPIRE].ADSGoogle Scholar
  62. [62]
    T.D. Bakeyev and A.A. Slavnov, Higher covariant derivative regularization revisited, Mod. Phys. Lett. A 11 (1996) 1539 [hep-th/9601092] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    R. Turcati and M.J. Neves, Complex-mass shell renormalization of the higher-derivative electrodynamics, arXiv:1601.07218 [INSPIRE].
  64. [64]
    H.G. Fargnoli, B. Hiller, A.P.B. Scarpelli, M. Sampaio and M.C. Nemes, Regularization Independent Analysis of the Origin of Two Loop Contributions to N = 1 Super Yang-Mills β-function, Eur. Phys. J. C 71 (2011) 1633 [arXiv:1009.2976] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    A.L. Cherchiglia, M. Sampaio, B. Hiller and A.P.B. Scarpelli, Subtleties in the β-function calculation of N = 1 supersymmetric gauge theories, Eur. Phys. J. C 76 (2016) 47 [arXiv:1508.05421] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    P.C. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore (1990).CrossRefzbMATHGoogle Scholar
  67. [67]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: Or a walk through superspace, IOP Publishing, Bristol U.K. (1998).zbMATHGoogle Scholar
  68. [68]
    B.S. DeWitt, Dynamical theory of groups and fields, Conf. Proc. C 630701 (1964) 585 [Les Houches Lect. Notes 13 (1964) 585] [INSPIRE].
  69. [69]
    L.F. Abbott, The Background Field Method Beyond One Loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].MathSciNetGoogle Scholar
  71. [71]
    L.D. Faddeev and A.A. Slavnov, Gauge Fields. Introduction To Quantum Theory, Front. Phys. 50 (1980) 1 [Front. Phys. 83 (1990) 1] [INSPIRE].
  72. [72]
    A.A. Slavnov, The Pauli-Villars Regularization for Nonabelian Gauge Theories (in Russian), Teor. Mat. Fiz. 33 (1977) 210 [Theor. Math. Phys. 33 (1977) 977] [INSPIRE].
  73. [73]
    A.A. Slavnov, Renormalization of Supersymmetric Gauge Theories. 2. Nonabelian Case, Nucl. Phys. B 97 (1975) 155 [INSPIRE].
  74. [74]
    S. Ferrara and O. Piguet, Perturbation Theory and Renormalization of Supersymmetric Yang-Mills Theories, Nucl. Phys. B 93 (1975) 261 [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    O. Piguet and A. Rouet, Supersymmetric BPHZ Renormalization. 2. Supersymmetric Extension of Pure Yang-Mills Model, Nucl. Phys. B 108 (1976) 265 [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    O. Piguet and K. Sibold, Renormalization of N = 1 Supersymmetrical Yang-Mills Theories. 2. The Radiative Corrections, Nucl. Phys. B 197 (1982) 272 [INSPIRE].CrossRefADSGoogle Scholar
  77. [77]
    S. Ferrara and B. Zumino, Supergauge Invariant Yang-Mills Theories, Nucl. Phys. B 79 (1974) 413 [INSPIRE].ADSGoogle Scholar
  78. [78]
    S.S. Aleshin, A.L. Kataev and K.V. Stepanyantz, Structure of three-loop contributions to the β-function of N = 1 SQED with N f flavors, regularized by the dimensional reduction, JETP Lett. 103 (2016) 77 [Pisma Zh. Eksp. Teor. Fiz. 130 (2016) 83] [arXiv:1511.05675] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • S. S. Aleshin
    • 1
  • A. E. Kazantsev
    • 1
  • M. B. Skoptsov
    • 1
  • K. V. Stepanyantz
    • 1
    Email author
  1. 1.Moscow State University, Physical Faculty, Department of Theoretical PhysicsMoscowRussia

Personalised recommendations