Topological phase transitions in the gauged BPS baby Skyrme model

  • C. AdamEmail author
  • C. Naya
  • T. Romanczukiewicz
  • J. Sanchez-Guillen
  • A. Wereszczynski
Open Access
Regular Article - Theoretical Physics


We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P, H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V = V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.


Field Theories in Lower Dimensions Solitons Monopoles and Instantons Topological States of Matter 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B.M.A.G. Piette, B.J. Schroers and W.J. Zakrzewski, Multi-solitons in a two-dimensional Skyrme model, Z. Phys. C 65 (1995) 165 [hep-th/9406160] [INSPIRE].ADSGoogle Scholar
  2. [2]
    B.M.A.G. Piette, B.J. Schroers and W.J. Zakrzewski, Dynamics of baby skyrmions, Nucl. Phys. B 439 (1995) 205 [hep-ph/9410256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Karliner and I. Hen, Rotational symmetry breaking in baby Skyrme models, Nonlinearity 21 (2008) 399 [arXiv:0710.3939] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Karliner and I. Hen, Review of Rotational Symmetry Breaking in Baby Skyrme Models, arXiv:0901.1489 [INSPIRE].
  5. [5]
    Y. Brihaye, T. Delsate, N. Sawado and Y. Kodama, Inflating baby-Skyrme branes in six dimensions, Phys. Rev. D 82 (2010) 106002 [arXiv:1007.0736] [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Delsate, M. Hayasaka and N. Sawado, Non-axisymmetric baby-skyrmion branes, Phys. Rev. D 86 (2012) 125009 [arXiv:1208.6341] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J. Jaykka, J.M. Speight and P. Sutcliffe, Broken Baby Skyrmions, Proc. Roy. Soc. Lond. A 468 (2012) 1085 [arXiv:1106.1125] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Jaykka and J.M. Speight, Easy plane baby skyrmions, Phys. Rev. D 82 (2010) 125030 [arXiv:1010.2217] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Foster, Baby Skyrmion chains, Nonlinearity 23 (2010) 465 [arXiv:0904.3846] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. Foster and P. Sutcliffe, Baby Skyrmions stabilized by vector mesons, Phys. Rev. D 79 (2009) 125026 [arXiv:0901.3622] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    R.A. Battye and M. Haberichter, Isospinning baby Skyrmion solutions, Phys. Rev. D 88 (2013) 125016 [arXiv:1309.3907] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Halavanau and Y. Shnir, Isorotating Baby Skyrmions, Phys. Rev. D 88 (2013) 085028 [arXiv:1309.4318] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M. Kobayashi and M. Nitta, Fractional vortex molecules and vortex polygons in a baby Skyrme model, Phys. Rev. D 87 (2013) 125013 [arXiv:1307.0242] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Nitta, Correspondence between Skyrmions in 2 + 1 and 3 + 1 Dimensions, Phys. Rev. D 87 (2013) 025013 [arXiv:1210.2233] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Bolognesi and P. Sutcliffe, A low-dimensional analogue of holographic baryons, J. Phys. A 47 (2014) 135401 [arXiv:1311.2685] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    P. Jennings and P. Sutcliffe, The dynamics of domain wall Skyrmions, J. Phys. A 46 (2013) 465401 [arXiv:1305.2869] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    B.A. Malomed, Y. Shnir and G. Zhilin, Spontaneous symmetry breaking in dual-core baby-Skyrmion systems, Phys. Rev. D 89 (2014) 085021 [arXiv:1402.0683] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P. Salmi and P. Sutcliffe, Aloof Baby Skyrmions, J. Phys. A 48 (2015) 035401 [arXiv:1409.8176] [INSPIRE].ADSzbMATHGoogle Scholar
  19. [19]
    T.H.R. Skyrme, A Non-Linear Field Theory, Proc. Roy. Soc. London Ser. A 260 (1961) 127.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    T.H.R. Skyrme, Kinks and the Dirac equation, J. Math. Phys. 12 (1971) 1735 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski, Bogomolnyi-Prasad-Sommerfield Skyrme Model and Nuclear Binding Energies, Phys. Rev. Lett. 111 (2013) 232501 [arXiv:1312.2960] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski, Nuclear binding energies from a Bogomolnyi-Prasad-Sommerfield Skyrme model, Phys. Rev. C 88 (2013) 054313 [arXiv:1309.0820] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Sutcliffe, Skyrmions, instantons and holography, JHEP 08 (2010) 019 [arXiv:1003.0023] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    P. Sutcliffe, Skyrmions in a truncated BPS theory, JHEP 04 (2011) 045 [arXiv:1101.2402] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691 (2010) 105 [arXiv:1001.4544] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at large N c, Phys. Rev. D 82 (2010) 085015 [arXiv:1007.1567] [INSPIRE].ADSGoogle Scholar
  28. [28]
    E. Bonenfant and L. Marleau, Nuclei as near BPS-Skyrmions, Phys. Rev. D 82 (2010) 054023 [arXiv:1007.1396] [INSPIRE].ADSGoogle Scholar
  29. [29]
    E. Bonenfant, L. Harbour and L. Marleau, Near-BPS Skyrmions: Non-shell configurations and Coulomb effects, Phys. Rev. D 85 (2012) 114045 [arXiv:1205.1414] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M.-O. Beaudoin and L. Marleau, Near-BPS Skyrmions: Constant baryon density, Nucl. Phys. B 883 (2014) 328 [arXiv:1305.4944] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J.M. Speight, Near BPS Skyrmions and Restricted Harmonic Maps, J. Geom. Phys. 92 (2015) 30 [arXiv:1406.0739] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    C. Adam, C. Naya, J. Sanchez-Guillen, J.M. Speight and A. Wereszczynski, Thermodynamics of the BPS Skyrme model, Phys. Rev. D 90 (2014) 045003 [arXiv:1405.2927] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, BPS Skyrmions as neutron stars, Phys. Lett. B 742 (2015) 136 [arXiv:1407.3799] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Gisiger and M.B. Paranjape, Solitons in a baby Skyrme model with invariance under volume/area preserving diffeomorphisms, Phys. Rev. D 55 (1997) 7731 [hep-ph/9606328] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Adam, T. Romanczukiewicz, J. Sanchez-Guillen and A. Wereszczynski, Investigation of restricted baby Skyrme models, Phys. Rev. D 81 (2010) 085007 [arXiv:1002.0851] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.M. Speight, Compactons and semi-compactons in the extreme baby Skyrme model, J. Phys. A 43 (2010) 405201 [arXiv:1006.3754] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  37. [37]
    L.T. Stepien, The Existence of Bogomolny decomposition for baby Skyrme models, arXiv:1204.6194 [INSPIRE].
  38. [38]
    L.T. Stepien, The existence of Bogomolny decomposition for gauged restricted baby Skyrme model, arXiv:1205.1017 [INSPIRE].
  39. [39]
    S. Bolognesi and W. Zakrzewski, Baby Skyrme Model, Near-BPS Approximations and Supersymmetric Extensions, Phys. Rev. D 91 (2015) 045034 [arXiv:1407.3140] [INSPIRE].ADSGoogle Scholar
  40. [40]
    C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski, The gauged BPS baby Skyrme model, Phys. Rev. D 86 (2012) 045010 [arXiv:1205.1532] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Adam, T. Romanczukiewicz, J. Sanchez-Guillen and A. Wereszczynski, Magnetothermodynamics of BPS baby skyrmions, JHEP 11 (2014) 095 [arXiv:1405.5215] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Adam, J.M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, N = 1 supersymmetric extension of the baby Skyrme model, Phys. Rev. D 84 (2011) 025008 [arXiv:1105.1168] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Adam, J.M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, Extended Supersymmetry and BPS solutions in baby Skyrme models, JHEP 05 (2013) 108 [arXiv:1304.0774] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    M. Nitta and S. Sasaki, BPS States in Supersymmetric Chiral Models with Higher Derivative Terms, Phys. Rev. D 90 (2014) 105001 [arXiv:1406.7647] [INSPIRE].ADSGoogle Scholar
  45. [45]
    E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Superunification from Eleven-Dimensions, Nucl. Phys. B 233 (1984) 433 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    C.G. Callan Jr. and E. Witten, Monopole Catalysis of Skyrmion Decay, Nucl. Phys. B 239 (1984) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    B.M.A.G. Piette and D.H. Tchrakian, Static solutions in the U (1) gauged Skyrme model, Phys. Rev. D 62 (2000) 025020 [hep-th/9709189] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    E. Radu and D.H. Tchrakian, Spinning U (1) gauged skyrmions, Phys. Lett. B 632 (2006) 109 [hep-th/0509014] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D. Foster and D. Harland, Gauged skyrmions, work in progress.Google Scholar
  51. [51]
    Y. Shnir and G. Zhilin, Gauged Hopfions, Phys. Rev. D 89 (2014) 105010 [arXiv:1404.4867] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S.B. Gudnason and M. Nitta, Baryonic sphere: a spherical domain wall carrying baryon number, Phys. Rev. D 89 (2014) 025012 [arXiv:1311.4454] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S.B. Gudnason and M. Nitta, Incarnations of Skyrmions, Phys. Rev. D 90 (2014) 085007 [arXiv:1407.7210] [INSPIRE].ADSGoogle Scholar
  54. [54]
    J. Gladikowski, B.M.A.G. Piette and B.J. Schroers, Skyrme-Maxwell solitons in (2 + 1)-dimensions, Phys. Rev. D 53 (1996) 844 [hep-th/9506099] [INSPIRE].ADSGoogle Scholar
  55. [55]
    B.J. Schroers, Bogomolny solitons in a gauged O(3) sigma model, Phys. Lett. B 356 (1995) 291 [hep-th/9506004] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    H.-J. Lee, B.-Y. Park, D.-P. Min, M. Rho and V. Vento, A Unified approach to high density: Pion fluctuations in skyrmion matter, Nucl. Phys. A 723 (2003) 427 [hep-ph/0302019] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Y.-L. Ma, M. Harada, H.K. Lee, Y. Oh, B.-Y. Park and M. Rho, Dense baryonic matter in the hidden local symmetry approach: Half-skyrmions and nucleon mass, Phys. Rev. D 88 (2013) 014016 [arXiv:1304.5638] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Rho, S.-J. Sin and I. Zahed, Dense QCD: A Holographic Dyonic Salt, Phys. Lett. B 689 (2010) 23 [arXiv:0910.3774] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R.A. Battye, M. Haberichter and S. Krusch, Classically isospinning Skyrmion solutions, Phys. Rev. D 90 (2014) 125035 [arXiv:1407.3264] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Haberichter, Isospinning Skyrmions, arXiv:1411.4142 [INSPIRE].
  61. [61]
    M. Gillard, D. Harland and J.M. Speight, Skyrmions with low binding energies, Nucl. Phys. B 895 (2015) 272 [arXiv:1501.05455] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    S.B. Gudnason and M. Nitta, Baryonic torii: Toroidal baryons in a generalized Skyrme model, Phys. Rev. D 91 (2015) 045027 [arXiv:1410.8407] [INSPIRE].ADSGoogle Scholar
  63. [63]
    N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nat. Nanotechnol. 8 (2013) 899.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • C. Adam
    • 1
    Email author
  • C. Naya
    • 1
  • T. Romanczukiewicz
    • 2
  • J. Sanchez-Guillen
    • 1
  • A. Wereszczynski
    • 2
  1. 1.Departamento de Física de PartículasUniversidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE)Santiago de CompostelaSpain
  2. 2.Institute of PhysicsJagiellonian UniversityKrakówPoland

Personalised recommendations