Regge behavior saves string theory from causality violations

  • Giuseppe D’Appollonio
  • Paolo Di Vecchia
  • Rodolfo Russo
  • Gabriele Veneziano
Open Access
Regular Article - Theoretical Physics


Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. [1]. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters bl s (the string-length parameter) with l sR p (the characteristic scale of the Dp-brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector. Such violations are instead neatly avoided when the full structure of string theory — and in particular its Regge behavior — is taken into account.


D-branes Bosonic Strings Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    X.O. Camanho, J.D. Edelstein, J.M. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, arXiv:1407.5597 [INSPIRE].
  2. [2]
    D. Amati, M. Ciafaloni and G. Veneziano, Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, High-energy string-brane scattering: Leading eikonal and beyond, JHEP 11 (2010) 100 [arXiv:1008.4773] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    W. Black and C. Monni, High energy string-brane scattering for massive states, Nucl. Phys. B 859 (2012) 299 [arXiv:1107.4321] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    M. Bianchi and P. Teresi, Scattering higher spins off D-branes, JHEP 01 (2012) 161 [arXiv:1108.1071] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    G. D’Appollonio, P. Vecchia, R. Russo and G. Veneziano, Microscopic unitary description of tidal excitations in high-energy string-brane collisions, JHEP 11 (2013) 126 [arXiv:1310.1254] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, The leading eikonal operator in string-brane scattering at high energy, Springer Proc. Phys. 153 (2014) 145 [arXiv:1310.4478] [INSPIRE].CrossRefMATHGoogle Scholar
  8. [8]
    M. Ademollo, A. Bellini and M. Ciafaloni, Superstring Regge Amplitudes and Emission Vertices, Phys. Lett. B 223 (1989) 318 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Ademollo, A. Bellini and M. Ciafaloni, Superstring Regge Amplitudes and Graviton Radiation at Planckian Energies, Nucl. Phys. B 338 (1990) 114 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    M. Ciafaloni and D. Colferai, Rescattering corrections and self-consistent metric in Planckian scattering, JHEP 10 (2014) 085 [arXiv:1406.6540] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, A microscopic description of absorption in high-energy string-brane collisions, in preparation.Google Scholar
  13. [13]
    G. Veneziano, String-theoretic unitary S-matrix at the threshold of black-hole production, JHEP 11 (2004) 001 [hep-th/0410166] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    I.R. Klebanov and L. Thorlacius, The Size of p-branes, Phys. Lett. B 371 (1996) 51 [hep-th/9510200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M.J. Duff, R.R. Khuri and J.X. Lu, String solitons, Phys. Rept. 259 (1995) 213 [hep-th/9412184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    R. Argurio, Brane physics in M-theory, hep-th/9807171 [INSPIRE].
  17. [17]
    P. Di Vecchia, M. Frau, I. Pesando, S. Sciuto, A. Lerda and R. Russo, Classical p-branes from boundary state, Nucl. Phys. B 507 (1997) 259 [hep-th/9707068] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Giuseppe D’Appollonio
    • 1
  • Paolo Di Vecchia
    • 2
    • 3
  • Rodolfo Russo
    • 4
  • Gabriele Veneziano
    • 5
    • 6
  1. 1.Dipartimento di Fisica, Università di Cagliari and INFN, Sezione di CagliariCittadella UniversitariaMonserratoItaly
  2. 2.The Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  3. 3.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  4. 4.Queen Mary University of LondonLondonUnited Kingdom
  5. 5.Collège de FranceParisFrance
  6. 6.Theory Division, CERNGeneva 23Switzerland

Personalised recommendations