Advertisement

Truncation effects in the functional renormalization group study of spontaneous symmetry breaking

  • N. Defenu
  • P. Mati
  • I. G. Márián
  • I. NándoriEmail author
  • A. Trombettoni
Open Access
Regular Article - Theoretical Physics

Abstract

We study the occurrence of spontaneous symmetry breaking (SSB) for O(N ) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N = 1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions.

Keywords

Field Theories in Lower Dimensions Spontaneous Symmetry Breaking Renormalization Group Renormalization Regularization and Renormalons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Huang, Statistical Mechanics, Wiley, New York (1987).zbMATHGoogle Scholar
  2. [2]
    N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P.C. Hohenberg, Existence of Long-Range Order in One and Two Dimensions, Phys. Rev. 158 (1967) 383 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Coleman, There are no Goldstone bosons in two dimensions, Comm. Math. Phys. 31 (1973) 259 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Stringari, Sum Rules and Bose-Einstein Condensations, in Bose-Einstein condensation, A. Griffin, D.W. Snoke and S. Stringari eds., Cambridge University Press, Cambridge (1995), p. 86 [cond-mat/9311024].
  6. [6]
    L.P. Kadanoff, Statistical physics: statics, dynamics and renormalization, World Scientific, Singapore (2000).CrossRefzbMATHGoogle Scholar
  7. [7]
    D. Cassi, Phase transitions and random walks on graphs: A generalization of the Mermin-Wagner theorem to disordered lattices, fractals, and other discrete structures, Phys. Rev. Lett. 68 (1992) 3631.ADSCrossRefGoogle Scholar
  8. [8]
    D. Cassi, Local vs Average Behavior on Inhomogeneous Structures: Recurrence on the Average and a Further Extension of Mermin-Wagner Theorem on Graphs, Phys. Rev. Lett. 76 (1996) 2941.ADSCrossRefGoogle Scholar
  9. [9]
    R. Burioni and D. Cassi, Universal Properties of Spectral Dimension, Phys. Rev. Lett. 76 (1996) 1091.ADSCrossRefGoogle Scholar
  10. [10]
    A. Codello and G. D’Odorico, O(N )-Universality Classes and the Mermin-Wagner Theorem, Phys. Rev. Lett. 110 (2013) 141601 [arXiv:1210.4037] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Mussardo, Statistical field theory: an introduction to exactly solved models in statistical physics, Oxford University Press, Oxford (2010).zbMATHGoogle Scholar
  12. [12]
    R. Burioni, D. Cassi and A. Vezzani, Inverse Mermin-Wagner theorem for classical spin models on graphs, Phys. Rev. E 60 (1999) 1500.ADSGoogle Scholar
  13. [13]
    H.E. Stanley, Dependence of critical properties on dimensionality of spins, Phys. Rev. Lett. 20 (1968) 589 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G.S. Joyce, Critical Properties of the Spherical Model, in Phase Transitions and Critical Phenomena, vol. 2, C. Domb and M.S. Green eds., Academic Press (1972), p. 375.Google Scholar
  15. [15]
    K.G. Wilson, The Renormalization Group: Critical Phenomena and the Kondo Problem, Rev. Mod. Phys. 47 (1975) 773 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    D.F. Litim and J.M. Pawlowski, On Gauge Invariant Wilsonian Flows, in The Exact Renormalization Group, A. Krasnitz, Y.A. Kubyshin, R. Potting and P. Sa. eds., World Scientific, Singapore (1999), p. 168 [hep-th/9901063] [INSPIRE].
  17. [17]
    C. Bagnuls and C. Bervillier, Exact renormalization group equations. An Introductory review, Phys. Rept. 348 (2001) 91 [hep-th/0002034] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363 (2002) 223 [hep-ph/0005122] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Polonyi, Lectures on the functional renormalization group method, Central Eur. J. Phys. 1 (2004) 1 [hep-th/0110026] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Delamotte, Introduction to the Non-Perturbative Renormalization Group, in Order, disorder and criticality. Advanced problems of phase transition theory, Y. Holovatch ed., World Scientific, Singapore (2007).Google Scholar
  21. [21]
    B. Delamotte, An Introduction to the nonperturbative renormalization group, in Renormalization Group and Effective Field Theory Approaches to Many-Body Systems, Lect. Notes Phys. 852 (2012) 49 [cond-mat/0702365] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys. 852 (2012) 287 [hep-ph/0611146] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    O.J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept. 511 (2012) 177 [arXiv:1003.1366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    H. Ballhausen, J. Berges and C. Wetterich, Critical phenomena in continuous dimension, Phys. Lett. B 582 (2004) 144 [hep-th/0310213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Codello, N. Defenu and G. D’Odorico, Critical exponents of O(N ) models in fractional dimensions, arXiv:1410.3308 [INSPIRE].
  26. [26]
    S.-B. Liao, J. Polonyi and M. Strickland, Optimization of renormalization group flow, Nucl. Phys. B 567 (2000) 493 [hep-th/9905206] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    D.F. Litim, Critical exponents from optimized renormalization group flows, Nucl. Phys. B 631 (2002) 128 [hep-th/0203006] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    D.F. Litim, Universality and the renormalisation group, JHEP 07 (2005) 005 [hep-th/0503096] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Optimization of the derivative expansion in the nonperturbative renormalization group, Phys. Rev. D 67 (2003) 065004 [hep-th/0211055] [INSPIRE].ADSGoogle Scholar
  30. [30]
    L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Nonperturbative renormalization group approach to the Ising model: A derivative expansion at order4, Phys. Rev. B 68 (2003) 064421 [hep-th/0302227] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.-P. Blaizot, R. Mendez Galain and N. Wschebor, A New method to solve the non perturbative renormalization group equations, Phys. Lett. B 632 (2006) 571 [hep-th/0503103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    C. Bervillier, B. Boisseau and H. Giacomini, Analytical approximation schemes for solving exact renormalization group equations in the local potential approximation, Nucl. Phys. B 789 (2008) 525 [arXiv:0706.0990] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    C. Bervillier, B. Boisseau and H. Giacomini, Analytical approximation schemes for solving exact renormalization group equations. II. Conformal mappings, Nucl. Phys. B 801 (2008) 296 [arXiv:0802.1970] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    F. Benitez, J.-P. Blaizot, H. Chaté, B. Delamotte, R. Méndez-Galain and N. Wschebor, Solutions of renormalization group flow equations with full momentum dependence, Phys. Rev. E 80 (2009) 030103 [arXiv:0901.0128] [INSPIRE].ADSGoogle Scholar
  35. [35]
    F. Benitez, J.-P. Blaizot, H. Chaté, B. Delamotte, R. Méndez-Galain and and N. Wschebor, Non-perturbative renormalization group preserving full-momentum dependence: implementation and quantitative evaluation, Phys. Rev. E 85 (2012) 026707 [arXiv:1110.2665] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Nagy, Critical exponents of the O(N ) model in the infrared limit from functional renormalization, Phys. Rev. D 86 (2012) 085020 [arXiv:1201.1625] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.-M. Caillol, Critical line of the Φ4 theory on a simple cubic lattice in the local potential approximation, Nucl. Phys. B 865 (2012) 291 [arXiv:1207.4014] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    A.S. Kapoyannis and N. Tetradis, Quantum mechanical tunneling and the renormalization group, Phys. Lett. A 276 (2000) 225 [hep-th/0010180] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    D. Zappalà, Improving the renormalization group approach to the quantum mechanical double well potential, Phys. Lett. A 290 (2001) 35 [quant-ph/0108019] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    S. Nagy and K. Sailer, Functional renormalization group for quantized anharmonic oscillator, Annals Phys. 326 (2011) 1839 [arXiv:1009.4041] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    N. Tetradis and C. Wetterich, Critical exponents from effective average action, Nucl. Phys. B 422 (1994) 541 [hep-ph/9308214] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. D’Attanasio and T.R. Morris, Large-N and the renormalization group, Phys. Lett. B 409 (1997) 363 [hep-th/9704094] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C. Wetterich, Average Action and the Renormalization Group Equations, Nucl. Phys. B 352 (1991) 529 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T.R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    I. Nándori, Functional renormalization group with a compactly supported smooth regulator function, JHEP 04 (2013) 150 [arXiv:1208.5021] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    N. Tetradis and C. Wetterich, Scale dependence of the average potential around the maximum in ϕ4 theories, Nucl. Phys. B 383 (1992) 197 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Nagy, I. Nándori, J. Polonyi and K. Sailer, Functional renormalization group approach to the Sine-Gordon model, Phys. Rev. Lett. 102 (2009) 241603 [arXiv:0904.3689] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Braun, H. Gies and D.D. Scherer, Asymptotic safety: a simple example, Phys. Rev. D 83 (2011) 085012 [arXiv:1011.1456] [INSPIRE].ADSGoogle Scholar
  50. [50]
    S. Nagy, Degeneracy induced scaling of the correlation length for periodic models, Nucl. Phys. B 864 (2012) 226 [arXiv:1204.0440] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    S. Nagy, Lectures on renormalization and asymptotic safety, Annals Phys. 350 (2014) 310 [arXiv:1211.4151] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    S. Nagy and K. Sailer, Interplay of fixed points in scalar models, Int. J. Mod. Phys. A 28 (2013) 1350130 [arXiv:1012.3007] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    A. Codello, G. D’Odorico and C. Pagani, A functional RG equation for the c-function, JHEP 07 (2014) 040 [arXiv:1312.7097] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford (1989).zbMATHGoogle Scholar
  55. [55]
    E. Marchais, Infrared properties of scalar field theories, Ph.D. Thesis, University of Sussex, Brighton, U.K. and online at http://sro.sussex.ac.uk/45244/.
  56. [56]
    T.R. Morris, On truncations of the exact renormalization group, Phys. Lett. B 334 (1994) 355 [hep-th/9405190] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Codello, Scaling Solutions in Continuous Dimension, J. Phys. A 45 (2012) 465006 [arXiv:1204.3877] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  58. [58]
    T.R. Morris, Properties of derivative expansion approximations to the renormalization group, Int. J. Mod. Phys. B 12 (1998) 1343 [hep-th/9610012] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional system possessing a continuous symmetry group, II. Quantum systems, Zh. Eksp. Teor. Fiz. 61 (1971) 1144 [Sov. Phys. JETP 34 (1972) 610].Google Scholar
  60. [60]
    J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Gräter and C. Wetterich, Kosterlitz-Thouless phase transition in the two-dimensional linear σ-model, Phys. Rev. Lett. 75 (1995) 378 [hep-ph/9409459] [INSPIRE].
  62. [62]
    I. Nándori, J. Polonyi and K. Sailer, On the renormalization of periodic potentials, Phys. Rev. D 63 (2001) 045022 [hep-th/9910167] [INSPIRE].ADSGoogle Scholar
  63. [63]
    G. von Gersdorff and C. Wetterich, Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition, Phys. Rev. B 64 (2001) 054513 [hep-th/0008114] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    I. Nándori, I.G. Márián and V. Bacsó, Spontaneous symmetry breaking and optimization of functional renormalization group, Phys. Rev. D 89 (2014) 047701 [arXiv:1303.4508] [INSPIRE].ADSGoogle Scholar
  65. [65]
    I.G. Márián, U.D. Jentschura and I. Nándori, The numerically optimized regulator and the functional renormalization group, J. Phys. G 41 (2014) 055001 [arXiv:1311.7377] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D.F. Litim, Optimization of the exact renormalization group, Phys. Lett. B 486 (2000) 92 [hep-th/0005245] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].ADSGoogle Scholar
  68. [68]
    D.F. Litim, Derivative expansion and renormalization group flows, JHEP 11 (2001) 059 [hep-th/0111159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • N. Defenu
    • 1
    • 2
  • P. Mati
    • 3
    • 4
    • 5
  • I. G. Márián
    • 4
  • I. Nándori
    • 4
    • 6
    • 7
    Email author
  • A. Trombettoni
    • 2
    • 1
    • 8
  1. 1.SISSATriesteItaly
  2. 2.CNR-IOM DEMOCRITOS Simulation CenterTriesteItaly
  3. 3.Budapest University of Technology and Economics, Department of Theoretical PhysicsBudapestHungary
  4. 4.University of DebrecenDebrecenHungary
  5. 5.Eötvös University, Department of Atomic PhysicsBudapestHungary
  6. 6.MTA-DE Particle Physics Research GroupDebrecenHungary
  7. 7.MTA AtomkiDebrecenHungary
  8. 8.INFN, Sezione di TriesteTriesteItaly

Personalised recommendations