Advertisement

Stringy effects in scrambling

  • Stephen H. Shenker
  • Douglas Stanford
Open Access
Regular Article - Theoretical Physics

Abstract

In [1] we gave a precise holographic calculation of chaos at the scrambling time scale. We studied the influence of a small perturbation, long in the past, on a two-sided correlation function in the thermofield double state. A similar analysis applies to squared commutators and other out-of-time-order one-sided correlators [2-6]. The essential bulk physics is a high energy scattering problem near the horizon of an AdS black hole. The above papers used Einstein gravity to study this problem; in the present paper we consider stringy and Planckian corrections. Elastic stringy corrections play an important role, effectively weakening and smearing out the development of chaos. We discuss their signature in the boundary field theory, commenting on the extension to weak coupling. Inelastic effects, although important for the evolution of the state, leave a parametrically small imprint on the correlators that we study. We briefly discuss ways to diagnose these small corrections, and we propose another correlator where inelastic effects are order one.

Keywords

Black Holes in String Theory AdS-CFT Correspondence Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Kitaev, Hidden Correlations in the Hawking Radiation and Thermal Noise, talk given at Fundamental Physics Prize Symposium, Nov. 10, 2014.Google Scholar
  5. [5]
    A. Kitaev, talk at Stanford SITP seminars, Nov. 11, 2014.Google Scholar
  6. [6]
    A. Kitaev, talk at Stanford SITP seminars, Dec. 18, 2014.Google Scholar
  7. [7]
    L. Susskind, Strings, black holes and Lorentz contraction, Phys. Rev. D 49 (1994) 6606 [hep-th/9308139] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    A. Mezhlumian, A.W. Peet and L. Thorlacius, String thermalization at a black hole horizon, Phys. Rev. D 50 (1994) 2725 [hep-th/9402125] [INSPIRE].ADSGoogle Scholar
  9. [9]
    K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev. D 48 (1993) 2670 [hep-th/9304128] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev. A 80 (2009) 012304 [quant-ph/0606161].ADSCrossRefGoogle Scholar
  12. [12]
    J. Emerson, E. Livine, and S. Lloyd, Convergence conditions for random quantum circuits, Phys. Rev. A 72 (2005) 060302 [quant-ph/0503210].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A.W. Harrow and R.A. Low, Random quantum circuits are approximate 2-designs, Comm. Math. Phys. 291 (2009) 257 [arXiv:0802.1919].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    L. Arnaud and D. Braun, Efficiency of producing random unitary matrices with quantum circuits, Phys. Rev. A 78 (2008) 062329 [arXiv:0807.0775].ADSCrossRefGoogle Scholar
  15. [15]
    W.G. Brown and L. Viola, Convergence rates for arbitrary statistical moments of random quantum circuits, Phys. Rev. Lett. 104 (2010) 250501 [arXiv:0910.0913].ADSCrossRefGoogle Scholar
  16. [16]
    I.T. Diniz and D. Jonathan, Comment on the paperRandom quantum circuits are approximate 2-designs, Comm. Math. Phys. 304 (2011) 281 [arXiv:1006.4202].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    W. Brown and O. Fawzi, Scrambling speed of random quantum circuits, arXiv:1210.6644 [INSPIRE].
  18. [18]
    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Marolf and J. Polchinski, Gauge/Gravity Duality and the Black Hole Interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Susskind, The Transfer of Entanglement: The Case for Firewalls, arXiv:1210.2098 [INSPIRE].
  24. [24]
    B. Freivogel and L. Susskind, A Framework for the landscape, Phys. Rev. D 70 (2004) 126007 [hep-th/0408133] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    R. Bousso and L. Susskind, The Multiverse Interpretation of Quantum Mechanics, Phys. Rev. D 85 (2012) 045007 [arXiv:1105.3796] [INSPIRE].ADSGoogle Scholar
  26. [26]
    I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and Transhorizon Measurements in AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Lawrence and E. Silverstein, in progress and private communication.Google Scholar
  28. [28]
    E. Silverstein, unpublished notes, February 2013.Google Scholar
  29. [29]
    E. Silverstein, Backdraft: String Creation in an Old Schwarzschild Black Hole, arXiv:1402.1486 [INSPIRE].
  30. [30]
    M. Dodelson and E. Silverstein, work in progress.Google Scholar
  31. [31]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, Rindler Quantum Gravity, Class. Quant. Grav. 29 (2012) 235025 [arXiv:1206.1323] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, arXiv:1412.5123 [INSPIRE].
  35. [35]
    A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. Phys. JETP 28 (1969) 1200.ADSGoogle Scholar
  36. [36]
    S. Jackson, L. McGough and H. Verlinde, Conformal Bootstrap, Universality and Gravitational Scattering, arXiv:1412.5205 [INSPIRE].
  37. [37]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP 08 (2007) 019 [hep-th/0611122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Amati, M. Ciafaloni and G. Veneziano, Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H.L. Verlinde and E.P. Verlinde, Scattering at Planckian energies, Nucl. Phys. B 371 (1992) 246 [hep-th/9110017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys. B 388 (1992) 570 [hep-th/9203082] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R.C. Brower, M.J. Strassler and C.-I. Tan, On the eikonal approximation in AdS space, JHEP 03 (2009) 050 [arXiv:0707.2408] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    P.C. Aichelburg and R.U. Sexl, On the Gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys. B 436 (1995) 721 [hep-th/9408169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, String theory on AdS 3, JHEP 12 (1998) 026 [hep-th/9812046] [INSPIRE].CrossRefzbMATHGoogle Scholar
  54. [54]
    D. Kutasov and N. Seiberg, More comments on string theory on AdS 3, JHEP 04 (1999) 008 [hep-th/9903219] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and \( \mathrm{S}\mathrm{L}\left(2,\mathbb{R}\right) \) WZW model 1.: The Spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the \( \mathrm{S}\mathrm{L}\left(2,\mathbb{R}\right) \) WZW model. Part 3. Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].ADSGoogle Scholar
  57. [57]
    D. Amati and C. Klimčík, Strings in a Shock Wave Background and Generation of Curved Geometry from Flat Space String Theory, Phys. Lett. B 210 (1988) 92 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    S.B. Giddings, Locality in quantum gravity and string theory, Phys. Rev. D 74 (2006) 106006 [hep-th/0604072] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [INSPIRE].ADSGoogle Scholar
  60. [60]
    L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [INSPIRE].Google Scholar
  61. [61]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377].Google Scholar
  62. [62]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  63. [63]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    B. Basso, S. Caron-Huot and A. Sever, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP 01 (2015) 027 [arXiv:1407.3766] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Alfimov, N. Gromov and V. Kazakov, QCD Pomeron from AdS/CFT Quantum Spectral Curve, arXiv:1408.2530 [INSPIRE].
  66. [66]
    T. Banks and G. Festuccia, The Regge Limit for Green Functions in Conformal Field Theory, JHEP 06 (2010) 105 [arXiv:0910.2746] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The Black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations