Classification of effective operators for interactions between the Standard Model and dark matter

Open Access
Regular Article - Theoretical Physics


We construct a basis for effective operators responsible for interactions between the Standard Model and a dark sector composed of particles with spin ≤ 1. Redundant operators are eliminated using dim-4 equations of motion. We consider simple scenarios where the dark matter components are stabilized against decay by ℤ2 symmetries. We determine operators which are loop-generated within an underlying theory and those that are potentially tree-level generated.


Beyond Standard Model Cosmology of Theories beyond the SM Effective field theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Two-component dark matter, JHEP 10 (2013) 158 [arXiv:1309.2986] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Constraints on two-component dark matter, Acta Phys. Polon. B 44 (2013) 2373 [arXiv:1310.7901] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H.D. Politzer, Power corrections at short distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Kluberg-Stern and J.B. Zuber, Renormalization of non-Abelian gauge theories in a background-field gauge. II. Gauge-invariant operators, Phys. Rev. D 12 (1975) 3159 [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Grosse-Knetter, Effective Lagrangians with higher derivatives and equations of motion, Phys. Rev. D 49 (1994) 6709 [hep-ph/9306321] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    H. Simma, Equations of motion for effective Lagrangians and Penguins in rare B decays, Z. Phys. C 61 (1994) 67 [hep-ph/9307274] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Wudka, Electroweak effective Lagrangians, Int. J. Mod. Phys. A 9 (1994) 2301 [hep-ph/9406205] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Hisano, D. Kobayashi, N. Mori and E. Senaha, Effective interaction of electroweak-interacting dark matter with Higgs boson and its phenomenology, Phys. Lett. B 742 (2015) 80 [arXiv:1410.3569] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R.J. Hill and M.P. Solon, Standard model anatomy of WIMP dark matter direct detection. II. QCD analysis and hadronic matrix elements, Phys. Rev. D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory, JHEP 10 (2014) 155 [arXiv:1407.1859] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.B. Krauss, S. Morisi, W. Porod and W. Winter, Higher dimensional effective operators for direct dark matter detection, JHEP 02 (2014) 056 [arXiv:1312.0009] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N.F. Bell, Y. Cai and A.D. Medina, Co-annihilating dark matter: effective operator analysis and collider phenomenology, Phys. Rev. D 89 (2014) 115001 [arXiv:1311.6169] [INSPIRE].ADSGoogle Scholar
  14. [14]
    E. Dudas, L. Heurtier, Y. Mambrini and B. Zaldivar, Extra U(1), effective operators, anomalies and dark matter, JHEP 11 (2013) 083 [arXiv:1307.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.R. Buckley, Using effective operators to understand CoGeNT and CDMS-Si signals, Phys. Rev. D 88 (2013) 055028 [arXiv:1308.4146] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. De Simone, A. Monin, A. Thamm and A. Urbano, On the effective operators for dark matter annihilations, JCAP 02 (2013) 039 [arXiv:1301.1486] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    J.-Y. Chen, E.W. Kolb and L.-T. Wang, Dark matter coupling to electroweak gauge and Higgs bosons: an effective field theory approach, Phys. Dark Univ. 2 (2013) 200 [arXiv:1305.0021] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    R. Ding, Y. Liao, J.-Y. Liu and K. Wang, Comprehensive constraints on a spin-3/2 singlet particle as a dark matter candidate, JCAP 05 (2013) 028 [arXiv:1302.4034] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Greljo, J. Julio, J.F. Kamenik, C. Smith and J. Zupan, Constraining Higgs mediated dark matter interactions, JHEP 11 (2013) 190 [arXiv:1309.3561] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Y.J. Chae and M. Perelstein, Dark matter search at a linear collider: effective operator approach, JHEP 05 (2013) 138 [arXiv:1211.4008] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.-M. Zheng et al., Constraining the interaction strength between dark matter and visible matter: I. Fermionic dark matter, Nucl. Phys. B 854 (2012) 350 [arXiv:1012.2022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    Z.-H. Yu et al., Constraining the interaction strength between dark matter and visible matter: II. Scalar, vector and spin-3/2 dark matter, Nucl. Phys. B 860 (2012) 115 [arXiv:1112.6052] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    R. Ding and Y. Liao, Spin 3/2 particle as a dark matter candidate: an effective field theory approach, JHEP 04 (2012) 054 [arXiv:1201.0506] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Cheung, P.-Y. Tseng, Y.-L.S. Tsai and T.-C. Yuan, Global constraints on effective dark matter interactions: relic density, direct detection, indirect detection and collider, JCAP 05 (2012) 001 [arXiv:1201.3402] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC, JHEP 08 (2011) 018 [arXiv:0912.4511] [INSPIRE].Google Scholar
  26. [26]
    J. Goodman et al., Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Duch, Effective operators for dark matter interactions, MSc Thesis, University of Warsaw, Warsaw Poland (2014) [arXiv:1410.4427] [INSPIRE].
  30. [30]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    M.B. Einhorn and J. Wudka, The bases of effective field theories, Nucl. Phys. B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    B. Grzadkowski and J. Wudka, Pragmatic approach to the little hierarchy problem: the case for dark matter and neutrino physics, Phys. Rev. Lett. 103 (2009) 091802 [arXiv:0902.0628] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    B. Grzadkowski and J. Wudka, Naive solution of the little hierarchy problem and its physical consequences, Acta Phys. Polon. B 40 (2009) 3007 [arXiv:0910.4829] [INSPIRE].ADSGoogle Scholar
  35. [35]
    O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar
  37. [37]
    H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265 [hep-th/0304245] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    H. van Hees, The renormalizability for massive Abelian gauge field theories revisited, hep-th/0305076 [INSPIRE].
  39. [39]
    J.F. Kamenik and C. Smith, FCNC portals to the dark sector, JHEP 03 (2012) 090 [arXiv:1111.6402] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    J.F. Kamenik and C. Smith, Could a light Higgs boson illuminate the dark sector?, Phys. Rev. D 85 (2012) 093017 [arXiv:1201.4814] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Department of Physics and AstronomyUC RiversideRiversideU.S.A.

Personalised recommendations