Habemus superstratum! A constructive proof of the existence of superstrata

  • Iosif Bena
  • Stefano Giusto
  • Rodolfo Russo
  • Masaki Shigemori
  • Nicholas P. Warner
Open Access
Regular Article - Theoretical Physics

Abstract

We construct the first example of a superstratum: a class of smooth horizonless supergravity solutions that are parameterized by arbitrary continuous functions of (at least) two variables and have the same charges as the supersymmetric D1-D5-P black hole. We work in Type IIB string theory on T4 or K3 and our solutions involve a subset of fields that can be described by a six-dimensional supergravity with two tensor multiplets. The solutions can thus be constructed using a linear structure, and we give an explicit recipe to start from a superposition of modes specified by an arbitrary function of two variables and impose regularity to obtain the full horizonless solutions in closed form. We also give the precise CFT description of these solutions and show that they are not dual to descendants of chiral primaries. They are thus much more general than all the known solutions whose CFT dual is precisely understood. Hence our construction represents a substantial step toward the ultimate goal of constructing the fully generic superstratum that can account for a finite fraction of the entropy of the three-charge black hole in the regime of parameters where the classical black hole solution exists.

Keywords

Black Holes in String Theory AdS-CFT Correspondence Supergravity Models 

References

  1. [1]
    I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, double supertube bubble, JHEP 10 (2011) 116 [arXiv:1107.2650] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602 [hep-th/0103030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    I. Bena, M. Shigemori and N.P. Warner, Black-hole entropy from supergravity superstrata states, JHEP 10 (2014) 140 [arXiv:1406.4506] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    S. Giusto, R. Russo and D. Turton, New D1-D5-P geometries from string amplitudes, JHEP 11 (2011) 062 [arXiv:1108.6331] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. Giusto and R. Russo, Perturbative superstrata, Nucl. Phys. B 869 (2013) 164 [arXiv:1211.1957] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    S. Giusto and R. Russo, Superdescendants of the D1-D5 CFT and their dual 3-charge geometries, JHEP 03 (2014) 007 [arXiv:1311.5536] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    B.E. Niehoff, O. Vasilakis and N.P. Warner, Multi-superthreads and supersheets, JHEP 04 (2013) 046 [arXiv:1203.1348] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    O. Lunin, S.D. Mathur and D. Turton, Adding momentum to supersymmetric geometries, Nucl. Phys. B 868 (2013) 383 [arXiv:1208.1770] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    O. Vasilakis, Corrugated multi-supersheets, JHEP 07 (2013) 008 [arXiv:1302.1241] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    B.E. Niehoff and N.P. Warner, Doubly-fluctuating BPS solutions in six dimensions, JHEP 10 (2013) 137 [arXiv:1303.5449] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Shigemori, Perturbative 3-charge microstate geometries in six dimensions, JHEP 10 (2013) 169 [arXiv:1307.3115] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    O. Lunin and S.D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys. B 610 (2001) 49 [hep-th/0105136] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    R. Emparan, D. Mateos and P.K. Townsend, Supergravity supertubes, JHEP 07 (2001) 011 [hep-th/0106012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  19. [19]
    I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP 04 (2007) 023 [hep-th/0611171] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J.B. Gutowski, D. Martelli and H.S. Reall, All supersymmetric solutions of minimal supergravity in six-dimensions, Class. Quant. Grav. 20 (2003) 5049 [hep-th/0306235] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    M. Cariglia and O.A.P. Mac Conamhna, The general form of supersymmetric solutions of N = (1,0) U(1) and SU(2) gauged supergravities in six-dimensions, Class. Quant. Grav. 21 (2004) 3171 [hep-th/0402055] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric solutions in six dimensions: a linear structure, JHEP 03 (2012) 084 [arXiv:1110.2781] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    S. Giusto, L. Martucci, M. Petrini and R. Russo, 6D microstate geometries from 10D structures, Nucl. Phys. B 876 (2013) 509 [arXiv:1306.1745] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    I. Bena, S.F. Ross and N.P. Warner, On the oscillation of species, JHEP 09 (2014) 113 [arXiv:1312.3635] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    I. Bena, S.F. Ross and N.P. Warner, Coiffured black rings, Class. Quant. Grav. 31 (2014) 165015 [arXiv:1405.5217] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    B.D. Chowdhury and A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 system, arXiv:1001.1444 [INSPIRE].
  35. [35]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, JHEP 01 (2014) 034 [arXiv:1208.2005] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    L. Susskind, Singularities, firewalls and complementarity, arXiv:1208.3445 [INSPIRE].
  39. [39]
    I. Bena, A. Puhm and B. Vercnocke, Non-extremal black hole microstates: fuzzballs of fire or fuzzballs of fuzz?, JHEP 12 (2012) 014 [arXiv:1208.3468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [INSPIRE].
  41. [41]
    S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity:Alice fuzzes but may not even know it!’, JHEP 09 (2013) 012 [arXiv:1210.6996] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    E. Verlinde and H. Verlinde, Passing through the Firewall, arXiv:1306.0515 [INSPIRE].
  44. [44]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    S.D. Mathur and D. Turton, The flaw in the firewall argument, Nucl. Phys. B 884 (2014) 566 [arXiv:1306.5488] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    I. Bena and N.P. Warner, Resolving the structure of black holes: philosophizing with a hammer, arXiv:1311.4538 [INSPIRE].
  47. [47]
    G.W. Gibbons and N.P. Warner, Global structure of five-dimensional fuzzballs, Class. Quant. Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    S. Giusto and R. Russo, Adding new hair to the 3-charge black ring, Class. Quant. Grav. 29 (2012) 085006 [arXiv:1201.2585] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau threefolds, Phys. Lett. B 357 (1995) 76 [hep-th/9506144] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Papadopoulos and P.K. Townsend, Compactification of D = 11 supergravity on spaces of exceptional holonomy, Phys. Lett. B 357 (1995) 300 [hep-th/9506150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    O. Vasilakis, Bubbling the newly grown black ring hair, JHEP 05 (2012) 033 [arXiv:1202.1819] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in bubbling backgrounds: Born-Infeld meets supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    L.J. Romans, Selfduality for interacting fields: covariant field equations for six-dimensional chiral supergravities, Nucl. Phys. B 276 (1986) 71 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Ferrara, F. Riccioni and A. Sagnotti, Tensor and vector multiplets in six-dimensional supergravity, Nucl. Phys. B 519 (1998) 115 [hep-th/9711059] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructinghairfor the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    S.D. Mathur and D. Turton, Microstates at the boundary of AdS, JHEP 05 (2012) 014 [arXiv:1112.6413] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S.D. Mathur and D. Turton, Oscillating supertubes and neutral rotating black hole microstates, JHEP 04 (2014) 072 [arXiv:1310.1354] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Asymptotically flat superstrata, in progress.Google Scholar
  61. [61]
    S.G. Avery, Using the D1-D5 CFT to understand black holes, arXiv:1012.0072 [INSPIRE].
  62. [62]
    M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP 07 (2012) 137 [arXiv:1203.1036] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    J. de Boer, Six-dimensional supergravity on S 3 × AdS 3 and 2D conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  66. [66]
    J. de Boer, Large-N elliptic genus and AdS/CFT correspondence, JHEP 05 (1999) 017 [hep-th/9812240] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal type II string theory, hep-th/9903163 [INSPIRE].
  68. [68]
    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    I. Bena, B.D. Chowdhury, J. de Boer, S. El-Showk and M. Shigemori, Moulting black holes, JHEP 03 (2012) 094 [arXiv:1108.0411] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the abyss: black ring microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 multicenter solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  72. [72]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, A bound on the entropy of supergravity?, JHEP 02 (2010) 062 [arXiv:0906.0011] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  73. [73]
    S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1-D5-P microstates at the cap, JHEP 02 (2013) 050 [arXiv:1211.0306] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Iosif Bena
    • 1
  • Stefano Giusto
    • 2
    • 3
  • Rodolfo Russo
    • 4
  • Masaki Shigemori
    • 5
    • 6
  • Nicholas P. Warner
    • 7
  1. 1.Institut de Physique ThéoriqueGif sur YvetteFrance
  2. 2.Dipartimento di Fisica ed Astronomia “Galileo Galilei”Università di PadovaPadovaItaly
  3. 3.INFN — Sezione di PadovaPadovaItaly
  4. 4.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.
  5. 5.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  6. 6.Hakubi CenterKyoto UniversityKyotoJapan
  7. 7.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesU.S.A.

Personalised recommendations