Axion like particles and the inverse seesaw mechanism

  • C. D. R. Carvajal
  • A. G. Dias
  • C. C. Nishi
  • B. L. Sánchez-Vega
Open Access
Regular Article - Theoretical Physics


Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.


Beyond Standard Model Neutrino Physics Discrete and Finite Symmetries Anomalies in Field and String Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Ringwald, Exploring the Role of Axions and Other WISPs in the Dark Universe, Phys. Dark Univ. 1 (2012) 116 [arXiv:1210.5081] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, arXiv:1311.0029 [INSPIRE].
  7. [7]
    R.N. Mohapatra, Mechanism for Understanding Small Neutrino Mass in Superstring Theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  9. [9]
    L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B 398 (1993) 301 [hep-ph/9210211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    P. Ramond, Mass hierarchies from anomalies: A peek behind the Planck curtain, hep-ph/9604251 [INSPIRE].
  14. [14]
    C. Csáki and H. Murayama, Discrete anomaly matching, Nucl. Phys. B 515 (1998) 114 [hep-th/9710105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, (Non-)Abelian discrete anomalies, Nucl. Phys. B 805 (2008) 124 [arXiv:0805.0207] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    C. Luhn and P. Ramond, Anomaly Conditions for Non-Abelian Finite Family Symmetries, JHEP 07 (2008) 085 [arXiv:0805.1736] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Phenomenology and Cosmology With Superstrings, Phys. Rev. Lett. 56 (1986) 432 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Dine, Problems of naturalness: Some lessons from string theory, hep-th/9207045 [INSPIRE].
  20. [20]
    A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion and local Z 13Z 3 symmetries, Phys. Rev. D 69 (2004) 015007 [hep-ph/0210172] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion in models with large local discrete symmetries, Phys. Rev. D 67 (2003) 095008 [hep-ph/0211107] [INSPIRE].ADSGoogle Scholar
  22. [22]
    K.S. Babu, I. Gogoladze and K. Wang, Stabilizing the axion by discrete gauge symmetries, Phys. Lett. B 560 (2003) 214 [hep-ph/0212339] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    L.M. Carpenter, M. Dine and G. Festuccia, Dynamics of the Peccei Quinn Scale, Phys. Rev. D 80 (2009) 125017 [arXiv:0906.1273] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.C. Montero and B.L. Sánchez-Vega, Natural PQ symmetry in the 3-3-1 model with a minimal scalar sector, Phys. Rev. D 84 (2011) 055019 [arXiv:1102.5374] [INSPIRE].ADSGoogle Scholar
  25. [25]
    K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn symmetry from a gauged discrete R symmetry, Phys. Rev. D 88 (2013) 075022 [arXiv:1308.1227] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A.G. Dias, A.C.B. Machado, C.C. Nishi, A. Ringwald and P. Vaudrevange, The Quest for an Intermediate-Scale Accidental Axion and Further ALPs, JHEP 06 (2014) 037 [arXiv:1403.5760] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Celis, J. Fuentes-Martín and H. Serôdio, A class of invisible axion models with FCNCs at tree level, JHEP 12 (2014) 167 [arXiv:1410.6218] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Mirizzi, G.G. Raffelt and P.D. Serpico, Signatures of axion-like particles in the spectra of TeV gamma-ray sources, Phys. Rev. D 76 (2007) 023001 [arXiv:0704.3044] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. De Angelis, M. Roncadelli and O. Mansutti, Evidence for a new light spin-zero boson from cosmological gamma-ray propagation?, Phys. Rev. D 76 (2007) 121301 [arXiv:0707.4312] [INSPIRE].ADSGoogle Scholar
  30. [30]
    HESS collaboration, F. Aharonian et al., New constraints on the Mid-IR EBL from the HESS discovery of VHE gamma rays from 1ES 0229+200, Astron. Astrophys. 475 (2007) L9 [arXiv:0709.4584] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    MAGIC collaboration, E. Aliu et al., Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe?, Science 320 (2008) 1752 [arXiv:0807.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    W. Essey and A. Kusenko, On weak redshift dependence of gamma-ray spectra of distant blazars, Astrophys. J. 751 (2012) L11 [arXiv:1111.0815] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Horns and M. Meyer, Indications for a pair-production anomaly from the propagation of VHE gamma-rays, JCAP 02 (2012) 033 [arXiv:1201.4711] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Simet, D. Hooper and P.D. Serpico, The Milky Way as a Kiloparsec-Scale Axionscope, Phys. Rev. D 77 (2008) 063001 [arXiv:0712.2825] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M.A. Sanchez-Conde, D. Paneque, E. Bloom, F. Prada and A. Dominguez, Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources, Phys. Rev. D 79 (2009) 123511 [arXiv:0905.3270] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Meyer, D. Horns and M. Raue, First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations, Phys. Rev. D 87 (2013) 035027 [arXiv:1302.1208] [INSPIRE].ADSGoogle Scholar
  37. [37]
    G.I. Rubtsov and S.V. Troitsky, Breaks in gamma-ray spectra of distant blazars and transparency of the Universe, JETP Lett. 100 (2014) 397 [arXiv:1406.0239] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    R. Lieu et al., Diffuse Extreme-Ultraviolet Emission from the Coma Cluster: Evidence for Rapidly Cooling Gases at Submegakelvin Temperatures, Science 274 (1996) 1335.ADSCrossRefGoogle Scholar
  39. [39]
    M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].ADSGoogle Scholar
  40. [40]
    T. Higaki and F. Takahashi, Dark Radiation and Dark Matter in Large Volume Compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.P. Conlon and M.C.D. Marsh, Excess Astrophysical Photons from a 0.1-1 keV Cosmic Axion Background, Phys. Rev. Lett. 111 (2013) 151301 [arXiv:1305.3603] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Angus, J.P. Conlon, M.C.D. Marsh, A.J. Powell and L.T. Witkowski, Soft X-ray Excess in the Coma Cluster from a Cosmic Axion Background, JCAP 09 (2014) 026 [arXiv:1312.3947] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    E. Bulbul, M. Markevitch, A. Foster, R.K. Smith, M. Loewenstein and S.W. Randall, Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Astrophys. J. 789 (2014) 13 [arXiv:1402.2301] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster, Phys. Rev. Lett. 113 (2014) 251301 [arXiv:1402.4119] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Higaki, K.S. Jeong and F. Takahashi, The 7 keV axion dark matter and the X-ray line signal, Phys. Lett. B 733 (2014) 25 [arXiv:1402.6965] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Jaeckel, J. Redondo and A. Ringwald, 3.55 keV hint for decaying axionlike particle dark matter, Phys. Rev. D 89 (2014) 103511 [arXiv:1402.7335] [INSPIRE].ADSGoogle Scholar
  47. [47]
    J. Biteau and D.A. Williams, The extragalactic background light, the Hubble constant and anomalies: conclusions from 20 years of TeV gamma-ray observations, arXiv:1502.04166 [INSPIRE].
  48. [48]
    K.S. Babu and R.N. Mohapatra, 7 keV Scalar Dark Matter and the Anomalous Galactic X-ray Spectrum, Phys. Rev. D 89 (2014) 115011 [arXiv:1404.2220] [INSPIRE].ADSGoogle Scholar
  49. [49]
    K.S. Babu, S. Chakdar and R.N. Mohapatra, Warm Dark Matter in Two Higgs Doublet Models, Phys. Rev. D 91 (2015) 075020 [arXiv:1412.7745] [INSPIRE].ADSGoogle Scholar
  50. [50]
    F.S. Queiroz and K. Sinha, The Poker Face of the Majoron Dark Matter Model: LUX to keV Line, Phys. Lett. B 735 (2014) 69 [arXiv:1404.1400] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    V. Berezinsky and J.W.F. Valle, The KeV majoron as a dark matter particle, Phys. Lett. B 318 (1993) 360 [hep-ph/9309214] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.P. Conlon and A.J. Powell, A 3.55 keV line from DM → aγ: predictions for cool-core and non-cool-core clusters, JCAP 01 (2015) 019 [arXiv:1406.5518] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Riemer-Sorensen, Questioning a 3.5 keV dark matter emission line, arXiv:1405.7943 [INSPIRE].
  54. [54]
    T.E. Jeltema and S. Profumo, Discovery of a 3.5 keV line in the Galactic Center and a Critical Look at the Origin of the Line Across Astronomical Targets, arXiv:1408.1699 [INSPIRE].
  55. [55]
    A. Boyarsky, J. Franse, D. Iakubovskyi and O. Ruchayskiy, Checking the dark matter origin of 3.53 keV line with the Milky Way center, arXiv:1408.2503 [INSPIRE].
  56. [56]
    R. Bähre et al., Any light particle search IITechnical Design Report, 2013 JINST 8 T09001 [arXiv:1302.5647] [INSPIRE].
  57. [57]
    E. Armengaud et al., Conceptual Design of the International Axion Observatory (IAXO), 2014 JINST 9 T05002 [arXiv:1401.3233] [INSPIRE].
  58. [58]
    A. Kogut et al., The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations, JCAP 07 (2011) 025 [arXiv:1105.2044] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    PRISM collaboration, P. André et al., PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An Extended White Paper, JCAP 02 (2014) 006 [arXiv:1310.1554] [INSPIRE].Google Scholar
  60. [60]
    A. Abada, G. Arcadi and M. Lucente, Dark Matter in the minimal Inverse Seesaw mechanism, arXiv:1406.6556 [INSPIRE].
  61. [61]
    P.S. Bhupal Dev and A. Pilaftsis, Light and Superlight Sterile Neutrinos in the Minimal Radiative Inverse Seesaw Model, Phys. Rev. D 87 (2013) 053007 [arXiv:1212.3808] [INSPIRE].ADSGoogle Scholar
  62. [62]
    H. Hettmansperger, M. Lindner and W. Rodejohann, Phenomenological Consequences of sub-leading Terms in See-Saw Formulas, JHEP 04 (2011) 123 [arXiv:1102.3432] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    W. Grimus and L. Lavoura, The seesaw mechanism at arbitrary order: Disentangling the small scale from the large scale, JHEP 11 (2000) 042 [hep-ph/0008179] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S.M. Boucenna, S. Morisi and J.W.F. Valle, The low-scale approach to neutrino masses, Adv. High Energy Phys. 2014 (2014) 831598 [arXiv:1404.3751] [INSPIRE].CrossRefGoogle Scholar
  65. [65]
    D.V. Forero, S. Morisi, M. Tortola and J.W.F. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw, JHEP 09 (2011) 142 [arXiv:1107.6009] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    A. Ibarra, E. Molinaro and S.T. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ)0ν -Decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001 [arXiv:1207.3734] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Das, P.S. Bhupal Dev and N. Okada, Direct bounds on electroweak scale pseudo-Dirac neutrinos from \( \sqrt{s} \) = 8 TeV LHC data, Phys. Lett. B 735 (2014) 364 [arXiv:1405.0177] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A.G. Dias, C.A. de S. Pires and P.S.R. da Silva, How the Inverse See-Saw Mechanism Can Reveal Itself Natural, Canonical and Independent of the Right-Handed Neutrino Mass, Phys. Rev. D 84 (2011) 053011 [arXiv:1107.0739] [INSPIRE].
  70. [70]
    A.G. Dias, C.A. de S. Pires, P.S. Rodrigues da Silva and A. Sampieri, A Simple Realization of the Inverse Seesaw Mechanism, Phys. Rev. D 86 (2012) 035007 [arXiv:1206.2590] [INSPIRE].
  71. [71]
    F.F. Freitas, C.A. d.S. Pires and P.S.R. da Silva, Inverse Type II Seesaw Mechanism for Neutrino Masses, arXiv:1408.5878 [INSPIRE].
  72. [72]
    A. Ringwald, Axions and Axion-Like Particles, arXiv:1407.0546 [INSPIRE].
  73. [73]
    J.E. Kim, Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept. 150 (1987) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Friedland, M. Giannotti and M. Wise, Constraining the Axion-Photon Coupling with Massive Stars, Phys. Rev. Lett. 110 (2013) 061101 [arXiv:1210.1271] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J.A. Grifols, E. Masso and R. Toldra, Gamma-rays from SN1987A due to pseudoscalar conversion, Phys. Rev. Lett. 77 (1996) 2372 [astro-ph/9606028] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J.W. Brockway, E.D. Carlson and G.G. Raffelt, SN1987A gamma-ray limits on the conversion of pseudoscalars, Phys. Lett. B 383 (1996) 439 [astro-ph/9605197] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi and A. Ringwald, Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles, JCAP 02 (2015) 006 [arXiv:1410.3747] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Payez, J.R. Cudell and D. Hutsemekers, New polarimetric constraints on axion-like particles, JCAP 07 (2012) 041 [arXiv:1204.6187] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Payez, Constraining ALPs with linear and circular polarisation measurements of quasar light, arXiv:1309.6114 [INSPIRE].
  80. [80]
    M. Cicoli, J.P. Conlon, M.C.D. Marsh and M. Rummel, 3.55 keV photon line and its morphology from a 3.55 keV axionlike particle line, Phys. Rev. D 90 (2014) 023540 [arXiv:1403.2370] [INSPIRE].ADSGoogle Scholar
  81. [81]
    H.M. Lee, S.C. Park and W.-I. Park, Cluster X-ray line at 3.5 keV from axion-like dark matter, Eur. Phys. J. C 74 (2014) 3062 [arXiv:1403.0865] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    M.L. Perl et al., The search for stable, massive, elementary particles, Int. J. Mod. Phys. A 16 (2001) 2137 [hep-ex/0102033] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].ADSGoogle Scholar
  84. [84]
    R.N. Mohapatra, From Old Symmetries to New Symmetries: Quarks, Leptons and B-L, Int. J. Mod. Phys. A 29 (2014) 1430066 [arXiv:1409.7557] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  85. [85]
    I.P. Ivanov and C.C. Nishi, Abelian symmetries of the N-Higgs-doublet model with Yukawa interactions, JHEP 11 (2013) 069 [arXiv:1309.3682] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    C.C. Nishi, Compatible abelian symmetries in N-Higgs-Doublet Models, JHEP 03 (2015) 034 [arXiv:1411.4909] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    P.S.B. Dev and A. Pilaftsis, Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models, Phys. Rev. D 86 (2012) 113001 [arXiv:1209.4051] [INSPIRE].ADSGoogle Scholar
  88. [88]
    Z.G. Berezhiani and M.Y. Khlopov, Physical and astrophysical consequences of breaking of the symmetry of families (in Russian), Sov. J. Nucl. Phys. 51 (1990) 935 [Yad. Fiz. 51 (1990) 1479] [INSPIRE].
  89. [89]
    Z.G. Berezhiani and M.Y. Khlopov, The theory of broken gauge symmetry of families (in Russian), Sov. J. Nucl. Phys. 51 (1990) 739 [Yad. Fiz. 51 (1990) 1157] [INSPIRE].
  90. [90]
    P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy Cold Dark Matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    D.J.E. Marsh and J. Silk, A Model For Halo Formation With Axion Mixed Dark Matter, Mon. Not. Roy. Astron. Soc. 437 (2013) 2652 [arXiv:1307.1705] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    K. Kadota, Y. Mao, K. Ichiki and J. Silk, Cosmologically probing ultra-light particle dark matter using 21 cm signals, JCAP 06 (2014) 011 [arXiv:1312.1898] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • C. D. R. Carvajal
    • 1
  • A. G. Dias
    • 1
  • C. C. Nishi
    • 2
    • 3
  • B. L. Sánchez-Vega
    • 4
  1. 1.Universidade Federal do ABC, Centro de Ciências Naturais e HumanasSanto AndréBrasil
  2. 2.Maryland Center for Fundamental PhysicsUniversity of MarylandCollege ParkU.S.A.
  3. 3.Universidade Federal do ABC, Centro de Matemática, Computação e CogniçãoSanto AndréBrasil
  4. 4.Argonne National LaboratoryArgonneU.S.A.

Personalised recommendations