Emerging jets

  • Pedro SchwallerEmail author
  • Daniel Stolarski
  • Andreas Weiler
Open Access
Regular Article - Theoretical Physics


In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.


Beyond Standard Model Supersymmetric Standard Model Technicolor and Composite Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Rocha et al., Cosmological simulations with self-interacting dark matter I: constant density cores and substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological simulations with self-interacting dark matter II: halo shapes vs. observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Vogelsberger, J. Zavala and A. Loeb, Subhaloes in self-interacting galactic dark matter haloes, Mon. Not. Roy. Astron. Soc. 423 (2012) 3740 [arXiv:1201.5892] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Zavala, M. Vogelsberger and M.G. Walker, Constraining self-interacting dark matter with the Milky Ways dwarf spheroidals, Monthly Notices of the Royal Astronomical Society: Letters 431 (2013) L20 [arXiv:1211.6426] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky composite dark matter, Phys. Rev. D 81 (2010) 095001 [arXiv:0909.2034] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite inelastic dark matter, Phys. Lett. B 692 (2010) 323 [arXiv:0903.3945] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Falkowski, J. Juknevich and J. Shelton, Dark matter through the neutrino portal, arXiv:0908.1790 [INSPIRE].
  9. [9]
    D. Spier Moreira Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, The cosmology of composite inelastic dark matter, JHEP 06 (2010) 113 [arXiv:1003.4729] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    J.L. Feng and Y. Shadmi, WIMPless dark matter from non-abelian hidden sectors with anomaly-mediated supersymmetry breaking, Phys. Rev. D 83 (2011) 095011 [arXiv:1102.0282] [INSPIRE].ADSGoogle Scholar
  11. [11]
    K. Kumar, A. Menon and T.M.P. Tait, Magnetic fluffy dark matter, JHEP 02 (2012) 131 [arXiv:1111.2336] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Bai and P. Schwaller, Scale of dark QCD, Phys. Rev. D 89 (2014) 063522 [arXiv:1306.4676] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-interacting dark matter from a non-abelian hidden sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Krnjaic and K. Sigurdson, Big Bang darkleosynthesis, arXiv:1406.1171 [INSPIRE].
  17. [17]
    W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei I: cosmology and indirect detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Dodelson, B.R. Greene and L.M. Widrow, Baryogenesis, dark matter and the width of the Z, Nucl. Phys. B 372 (1992) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Fujii and T. Yanagida, A solution to the coincidence puzzle of ΩB and ΩDM, Phys. Lett. B 542 (2002) 80 [hep-ph/0206066] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Kitano, H. Murayama and M. Ratz, Unified origin of baryons and dark matter, Phys. Lett. B 669 (2008) 145 [arXiv:0807.4313] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Shelton and K.M. Zurek, Darkogenesis: a baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [INSPIRE].ADSGoogle Scholar
  30. [30]
    H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.R. Buckley and L. Randall, Xogenesis, JHEP 09 (2011) 009 [arXiv:1009.0270] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via leptogenesis and dark sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric dark matter from a GeV hidden sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M.T. Frandsen, S. Sarkar and K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, Phys. Rev. D 84 (2011) 051703 [arXiv:1103.4350] [INSPIRE].ADSGoogle Scholar
  35. [35]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    K.M. Zurek, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Freytsis, D.J. Robinson and Y. Tsai, Galactic center gamma-ray excess through a dark shower, Phys. Rev. D 91 (2015) 035028 [arXiv:1410.3818] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.J. Strassler and K.M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett. B 661 (2008) 263 [hep-ph/0605193] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M.J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, hep-ph/0607160 [INSPIRE].
  41. [41]
    T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    ATLAS collaboration, M. Verducci, Hidden valley search at ATLAS, J. Phys. Conf. Ser. 335 (2011) 012068 [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    Y.F. Chan, M. Low, D.E. Morrissey and A.P. Spray, LHC signatures of a minimal supersymmetric hidden valley, JHEP 05 (2012) 155 [arXiv:1112.2705] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M.J. Strassler, On the phenomenology of hidden valleys with heavy flavor, arXiv:0806.2385 [INSPIRE].
  45. [45]
    J. Brod, J. Drobnak, A.L. Kagan, E. Stamou and J. Zupan, Stealth QCD-like strong interactions and the \( t\overline{t} \) asymmetry, arXiv:1407.8188 [INSPIRE].
  46. [46]
    P. Agrawal, M. Blanke and K. Gemmler, Flavored dark matter beyond minimal flavor violation, JHEP 1410 (2014) 72 [arXiv:1405.6709] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L. Calibbi, A. Crivellin and B. Zaldivar, The flavour portal to dark matter, arXiv:1501.07268 [INSPIRE].
  48. [48]
    A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  50. [50]
    E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [INSPIRE].
  55. [55]
    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+eannihilation by perturbation theory in quantum chromodynamics., Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [INSPIRE].
  57. [57]
    T. Cohen, M. Lisanti and H.K. Lou, Semi-visible jets: dark matter undercover at the LHC, arXiv:1503.00009 [INSPIRE].
  58. [58]
    L. Carloni and T. Sjöstrand, Visible effects of invisible hidden valley radiation, JHEP 09 (2010) 105 [arXiv:1006.2911] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    L. Carloni, J. Rathsman and T. Sjöstrand, Discerning secluded sector gauge structures, JHEP 04 (2011) 091 [arXiv:1102.3795] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Y. Bai and A. Rajaraman, Dark matter jets at the LHC, arXiv:1109.6009 [INSPIRE].
  61. [61]
    ATLAS collaboration, Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013)2263 [arXiv:1210.4826] [INSPIRE].ADSGoogle Scholar
  62. [62]
    CMS collaboration, Search for pair-produced dijet resonances in four-jet final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 110 (2013) 141802 [arXiv:1302.0531] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    CMS collaboration, Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV, arXiv:1412.7706 [INSPIRE].
  64. [64]
    CMS collaboration, Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range, Eur. Phys. J. C 75 (2015) 186 [arXiv:1412.1633] [INSPIRE].ADSGoogle Scholar
  65. [65]
    CMS collaboration, Search for long-lived neutral particles decaying to quark-antiquark pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 012007 [arXiv:1411.6530] [INSPIRE].ADSGoogle Scholar
  66. [66]
    ATLAS collaboration, Triggers for displaced decays of long-lived neutral particles in the ATLAS detector, 2013 JINST 8 P07015 [arXiv:1305.2284] [INSPIRE].
  67. [67]
    ATLAS collaboration, Search for pair-produced long-lived neutral particles decaying in the ATLAS hadronic calorimeter in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 743 (2015) 15 [arXiv:1501.04020] [INSPIRE].ADSGoogle Scholar
  68. [68]
    ATLAS collaboration, Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 088 [arXiv:1409.0746] [INSPIRE].ADSGoogle Scholar
  69. [69]
    LHCb collaboration, Search for long-lived particles decaying to jet pairs, Eur. Phys. J. C 75 (2015) 152 [arXiv:1412.3021] [INSPIRE].Google Scholar
  70. [70]
    ATLAS collaboration, Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS, Phys. Lett. B 707 (2012) 478 [arXiv:1109.2242] [INSPIRE].ADSGoogle Scholar
  71. [71]
    ATLAS collaboration, Search for long-lived, heavy particles in final states with a muon and a multi-track displaced vertex in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-092 (2013).
  72. [72]
    CMS collaboration, Search for long-lived particles decaying to final states that include dileptons, CMS-PAS-EXO-12-037 (2012).
  73. [73]
    CMS collaboration, Search for stopped long-lived particles produced in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 08 (2012) 026 [arXiv:1207.0106] [INSPIRE].ADSGoogle Scholar
  74. [74]
    ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584] [INSPIRE].ADSGoogle Scholar
  75. [75]
    CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST 9 P10009 [arXiv:1405.6569] [INSPIRE].
  76. [76]
    CMS collaboration, K. Yi, Search for single and pair-production of dijet resonances with the CMS detector, J. Phys. Conf. Ser. 455 (2013) 012034 [arXiv:1307.1400] [INSPIRE].CrossRefGoogle Scholar
  77. [77]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  79. [79]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    P.Z. Skands, private communication.Google Scholar
  81. [81]
    B. Andersson, The Lund model, Cambridge University Press, Cambridge U.K. (1997).zbMATHGoogle Scholar
  82. [82]
    LHCb HLT project collaboration, J. Albrecht, V.V. Gligorov, G. Raven and S. Tolk, Performance of the LHCb high level trigger in 2012, J. Phys. Conf. Ser. 513 (2014) 012001 [arXiv:1310.8544] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Chang, P.J. Fox and N. Weiner, Naturalness and Higgs decays in the MSSM with a singlet, JHEP 08 (2006) 068 [hep-ph/0511250] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M.R. Buckley, V. Halyo and P. Lujan, Dont miss the displaced Higgs at the LHC again, arXiv:1405.2082 [INSPIRE].
  86. [86]
    P. Jaiswal, K. Kopp and T. Okui, Higgs production amidst the LHC detector, Phys. Rev. D 87 (2013) 115017 [arXiv:1303.1181] [INSPIRE].ADSGoogle Scholar
  87. [87]
    A. Falkowski, J.T. Ruderman, T. Volansky and J. Zupan, Hidden Higgs decaying to lepton jets, JHEP 05 (2010) 077 [arXiv:1002.2952] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A. Falkowski, J.T. Ruderman, T. Volansky and J. Zupan, Discovering Higgs decays to lepton jets at hadron colliders, Phys. Rev. Lett. 105 (2010) 241801 [arXiv:1007.3496] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    Y. Cui and B. Shuve, Probing baryogenesis with displaced vertices at the LHC, JHEP 02 (2015) 049 [arXiv:1409.6729] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A. Falkowski, Y. Hochberg and J.T. Ruderman, Displaced vertices from X-ray lines, JHEP 11 (2014) 140 [arXiv:1409.2872] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    J.C. Helo, M. Hirsch and S. Kovalenko, Heavy neutrino searches at the LHC with displaced vertices, Phys. Rev. D 89 (2014) 073005 [arXiv:1312.2900] [INSPIRE].ADSGoogle Scholar
  92. [92]
    D.G. Cerdeño, V. Martín-Lozano and O. Seto, Displaced vertices and long-lived charged particles in the NMSSM with right-handed sneutrinos, JHEP 05 (2014) 035 [arXiv:1311.7260] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the dark at the LHC, arXiv:1501.05310 [INSPIRE].
  94. [94]
    J.A. Evans and Y. Kats, LHC coverage of RPV MSSM with light stops, JHEP 04 (2013) 028 [arXiv:1209.0764] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    B. Bhattacherjee, J.L. Evans, M. Ibe, S. Matsumoto and T.T. Yanagida, Natural supersymmetrys last hope: R-parity violation via UDD operators, Phys. Rev. D 87 (2013) 115002 [arXiv:1301.2336] [INSPIRE].ADSGoogle Scholar
  96. [96]
    N. Desai and P.Z. Skands, Supersymmetry and generic BSM models in PYTHIA 8, Eur. Phys. J. C 72 (2012) 2238 [arXiv:1109.5852] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    J. Gallicchio et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  99. [99]
    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press, Cambridge U.K. (1996).CrossRefGoogle Scholar
  100. [100]
    P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    T. Appelquist, A.G. Cohen and M. Schmaltz, A new constraint on strongly coupled gauge theories, Phys. Rev. D 60 (1999) 045003 [hep-th/9901109] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Pedro Schwaller
    • 1
    Email author
  • Daniel Stolarski
    • 1
  • Andreas Weiler
    • 1
    • 2
  1. 1.CERN TH-PH DivisionMeyrinSwitzerland
  2. 2.DESYHamburgGermany

Personalised recommendations