\( \overline{\mathrm{D}3} \) and dS

  • Eric A. Bergshoeff
  • Keshav Dasgupta
  • Renata Kallosh
  • Antoine Van Proeyen
  • Timm Wrase
Open Access
Regular Article - Theoretical Physics

Abstract

The role of the \( \overline{\mathrm{D}3} \) brane in providing de Sitter vacua with spontaneously broken supersymmetry in the KKLT construction is clarified. The first step in this direction was explained in [1, 2]: it was shown there that in the GKP background the bosonic contributions to the vacuum energy from the DBI and WZ term cancel for a D3 brane, but double for a \( \overline{\mathrm{D}3} \) brane, leading to de Sitter vacua. The next step was taken in [3] where the analogous mechanism of the doubling (cancelation) of the \( \overline{\mathrm{D}3} \) (D3) DBI and WZ terms was discovered in the presence of Volkov-Akulov fermions living on the brane, in a flat supergravity background. Here we confirm this mechanism of doubling/cancelation for the \( \overline{\mathrm{D}3} \)/D3 brane in the GKP supergravity background preserving \( \mathcal{N} \) = 1, d = 4 supersymmetry. We find that imaginary self-dual G(3) flux of type (2, 1) nicely removes the SU(3) fermion triplet by giving it a large mass, while leaving the Volkov-Akulov goldstino, which is the SU(3) singlet, massless. This makes the de Sitter landscape in D-brane physics clearly related to de Sitter vacua in effective d = 4 supergravity with a nilpotent multiplet and spontaneously broken supersymmetry.

Keywords

Supersymmetry Breaking dS vacua in string theory D-branes 

References

  1. [1]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  2. [2]
    S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Kallosh and T. Wrase, Emergence of Spontaneously Broken Supersymmetry on an Anti-D3-Brane in KKLT dS Vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    M. Cederwall, A. von Gussich, B.E.W. Nilsson and A. Westerberg, The Dirichlet super three-brane in ten-dimensional type IIB supergravity, Nucl. Phys. B 490 (1997) 163 [hep-th/9610148] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell and A. Westerberg, The Dirichlet super p-branes in ten-dimensional type IIA and IIB supergravity, Nucl. Phys. B 490 (1997) 179 [hep-th/9611159] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    E. Bergshoeff and P.K. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145 [hep-th/9611173] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    M. Aganagic, C. Popescu and J.H. Schwarz, Gauge invariant and gauge fixed D-brane actions, Nucl. Phys. B 495 (1997) 99 [hep-th/9612080] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    M. Aganagic, C. Popescu and J.H. Schwarz, D-brane actions with local kappa symmetry, Phys. Lett. B 393 (1997) 311 [hep-th/9610249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Bergshoeff, R. Kallosh, T. Ortín and G. Papadopoulos, Kappa symmetry, supersymmetry and intersecting branes, Nucl. Phys. B 502 (1997) 149 [hep-th/9705040] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    R. Kallosh, Volkov-Akulov theory and D-branes, Lect. Notes Phys. 509 (1998) 49 [hep-th/9705118] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. Simon, Brane Effective Actions, κ-symmetry and Applications, Living Rev. Rel. 15 (2012) 3 [arXiv:1110.2422] [INSPIRE].CrossRefMATHGoogle Scholar
  13. [13]
    E. Bergshoeff, F. Coomans, R. Kallosh, C.S. Shahbazi and A. Van Proeyen, Dirac-Born-Infeld-Volkov-Akulov and Deformation of Supersymmetry, JHEP 08 (2013) 100 [arXiv:1303.5662] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    E. Bergshoeff, M. de Roo, B. Janssen and T. Ortín, The Super D9-brane and its truncations, Nucl. Phys. B 550 (1999) 289 [hep-th/9901055] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    F. Riccioni, Truncations of the D9-brane action and type-I strings, Phys. Lett. B 560 (2003) 223 [hep-th/0301021] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [INSPIRE].ADSMATHGoogle Scholar
  17. [17]
    D. Volkov and V. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B46 (1973) 109.ADSCrossRefGoogle Scholar
  18. [18]
    B. Michel, E. Mintun, J. Polchinski, A. Puhm and P. Saad, Remarks on brane and antibrane dynamics, arXiv:1412.5702 [INSPIRE].
  19. [19]
    G.S. Hartnett, Localised Anti-Branes in Flux Backgrounds, arXiv:1501.06568 [INSPIRE].
  20. [20]
    F.F. Gautason, B. Truijen and T. Van Riet, Smeared antibranes polarise in AdS, arXiv:1502.00927 [INSPIRE].
  21. [21]
    U.H. Danielsson, Perturbative decay of anti-branes in flux backgrounds due to space time instabilities, arXiv:1502.01234 [INSPIRE].
  22. [22]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  23. [23]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    G.W. Gibbons, Aspects of Supergravity Theories, Cambridge University Press, Cambridge U.K. Print-85-0061 (1984).Google Scholar
  26. [26]
    G.W. Gibbons, Thoughts on tachyon cosmology, Class. Quant. Grav. 20 (2003) S321 [hep-th/0301117] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E.A. Ivanov and A.A. Kapustnikov, General Relationship Between Linear and Nonlinear Realizations of Supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].ADSGoogle Scholar
  31. [31]
    U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    R. Kallosh and A. Linde, Inflation and Uplifting with Nilpotent Superfields, JCAP 01 (2015) 025 [arXiv:1408.5950] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    R. Kallosh, A. Linde and M. Scalisi, Inflation, de Sitter Landscape and Super-Higgs effect, JHEP 03 (2015) 111 [arXiv:1411.5671] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  37. [37]
    S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions: Exact nonlinear field redefinition, Phys. Lett. B 698 (2011) 319 [arXiv:1009.3298] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Hughes, J. Liu and J. Polchinski, Supermembranes, Phys. Lett. B 180 (1986) 370 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    E. Bergshoeff, R. Kallosh, A.-K. Kashani-Poor, D. Sorokin and A. Tomasiello, An Index for the Dirac operator on D3 branes with background fluxes, JHEP 10 (2005) 102 [hep-th/0507069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    S. Sugimoto, Anomaly cancellations in type-I D-9 D - 9 system and the USp(32) string theory, Prog. Theor. Phys. 102 (1999) 685 [hep-th/9905159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    I. Antoniadis, E. Dudas and A. Sagnotti, Brane supersymmetry breaking, Phys. Lett. B 464 (1999) 38 [hep-th/9908023] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    A.M. Uranga, Comments on nonsupersymmetric orientifolds at strong coupling, JHEP 02 (2000) 041 [hep-th/9912145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    M. Graña, D3-brane action in a supergravity background: The Fermionic story, Phys. Rev. D 66 (2002) 045014 [hep-th/0202118] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    P.K. Tripathy and S.P. Trivedi, D3 brane action and fermion zero modes in presence of background flux, JHEP 06 (2005) 066 [hep-th/0503072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    D. Marolf, L. Martucci and P.J. Silva, Fermions, T duality and effective actions for D-branes in bosonic backgrounds, JHEP 04 (2003) 051 [hep-th/0303209] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    L. Martucci, J. Rosseel, D. Van den Bleeken and A. Van Proeyen, Dirac actions for D-branes on backgrounds with fluxes, Class. Quant. Grav. 22 (2005) 2745 [hep-th/0504041] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    P. McGuirk, G. Shiu and F. Ye, Soft branes in supersymmetry-breaking backgrounds, JHEP 07 (2012) 188 [arXiv:1206.0754] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M. Graña and J. Polchinski, Gauge/gravity duals with holomorphic dilaton, Phys. Rev. D 65 (2002) 126005 [hep-th/0106014] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).CrossRefMATHGoogle Scholar
  51. [51]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic Classes of Metastable de Sitter Vacua, JHEP 1410 (2014) 11 [arXiv:1406.4866] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    M.C.D. Marsh, B. Vercnocke and T. Wrase, Decoupling and de Sitter Vacua in Approximate No-Scale Supergravities, arXiv:1411.6625 [INSPIRE].
  54. [54]
    A.R. Frey, G. Torroba, B. Underwood and M.R. Douglas, The Universal Kähler Modulus in Warped Compactifications, JHEP 01 (2009) 036 [arXiv:0810.5768] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  55. [55]
    K. Dasgupta, R. Gwyn, E. McDonough, M. Mia and R. Tatar, de Sitter Vacua in Type IIB String Theory: Classical Solutions and Quantum Corrections, JHEP 07 (2014) 054 [arXiv:1402.5112] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G - flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    K. Dasgupta and S. Mukhi, Orbifolds of M-theory, Nucl. Phys. B 465 (1996) 399 [hep-th/9512196] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    E. Witten, Five-branes and M-theory on an orbifold, Nucl. Phys. B 463 (1996) 383 [hep-th/9512219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
  • Keshav Dasgupta
    • 2
    • 3
  • Renata Kallosh
    • 3
  • Antoine Van Proeyen
    • 4
  • Timm Wrase
    • 5
  1. 1.Van Swinderen Institute for Particle Physics and GravityUniversity of GroningenGroningenThe Netherlands
  2. 2.Ernest Rutherford Physics BuildingMcGill UniversityMontréalCanada
  3. 3.Department of PhysicsStanford UniversityStanfordU.S.A.
  4. 4.Instituut voor Theoretische Fysica, KU LeuvenLeuvenBelgium
  5. 5.Institute for Theoretical Physics, TU WienViennaAustria

Personalised recommendations