Advertisement

The superconformal index of the (2,0) theory with defects

  • Mathew Bullimore
  • Hee-Cheol KimEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the supersymmetric partition function of the six-dimensional (2, 0) theory of type A N −1 on S 1 × S 5 in the presence of both codimension two and codimension four defects. We concentrate on a limit of the partition function depending on a single parameter. From the allowed supersymmetric configurations of defects we find a precise match with the characters of irreducible modules of W N algebras and affine Lie algebras of type A N −1.

Keywords

Supersymmetric gauge theory Brane Dynamics in Gauge Theories Field Theories in Higher Dimensions M-Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  3. [3]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d Topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d Superconformal Index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, Adv. Theor. Math. Phys. 17 (2013) 975 [arXiv:1112.5179] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE].
  9. [9]
    H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144 [arXiv:1206.6339] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative Topological Strings, arXiv:1210.5909 [INSPIRE].
  11. [11]
    H.C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes, arXiv:1211.0144 [INSPIRE].
  12. [12]
    J. Källén and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the Five-Sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    Y. Imamura, Supersymmetric theories on squashed five-sphere, PTEP 2013 (2013) 013B04 [arXiv:1209.0561] [INSPIRE].Google Scholar
  16. [16]
    Y. Imamura, Perturbative partition function for squashed S 5, arXiv:1210.6308 [INSPIRE].
  17. [17]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSzbMATHGoogle Scholar
  18. [18]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    C. Beem, L. Rastelli and B.C. van Rees, W Symmetry in six dimensions, arXiv:1404.1079 [INSPIRE].
  20. [20]
    N. Drukker, D. Gaiotto and J. Gomis, The Virtue of Defects in 4D Gauge Theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    H.-C. Kim, S. Kim, S.-S. Kim and K. Lee, The general M5-brane superconformal index, arXiv:1307.7660 [INSPIRE].
  24. [24]
    N. Bobev, M. Bullimore and H.-C. Kim, in progress.Google Scholar
  25. [25]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    N.A. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [hep-th/0306238].
  27. [27]
    A.S. Losev, A. Marshakov and N.A. Nekrasov, Small instantons, little strings and free fermions, hep-th/0302191 [hep-th/0302191].
  28. [28]
    S. Shadchin, Saddle point equations in Seiberg-Witten theory, JHEP 10 (2004) 033 [hep-th/0408066] [hep-th/0408066].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Narukawa, The modular properties and the integral representations of the multiple elliptic gamma functions, math/0306164.
  30. [30]
    D. Young, Wilson Loops in Five-Dimensional super-Yang-Mills, JHEP 02 (2012) 052 [arXiv:1112.3309] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    B. Assel, J. Estes and M. Yamazaki, Wilson Loops in 5d N = 1 SCFTs and AdS/CFT, Annales Henri Poincaré 15 (2014) 589 [arXiv:1212.1202] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073 [INSPIRE].
  34. [34]
    J. Gomis and S. Matsuura, Bubbling surface operators and S-duality, JHEP 06 (2007) 025 [arXiv:0704.1657] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    Y. Tachikawa, On W-algebras and the symmetries of defects of 6d N = (2, 0) theory, JHEP 03 (2011) 043 [arXiv:1102.0076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the chain-saw quiver, JHEP 06 (2011) 119 [arXiv:1105.0357] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, Gauge Theories and Macdonald Polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, JHEP 01 (2013) 022 [arXiv:1207.3577] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    B. Feigin, M. Finkelberg, A. Negut and L. Rybnikov, Yangians and cohomology rings of Laumon spaces, arXiv:0812.4656.
  44. [44]
    M. Finkelberg, and L. Rybnikov, Quantization of Drinfeld Zastava in type A, arXiv:1009.0676.
  45. [45]
    M. Bullimore, H.-C. Kim and P. Koroteev, Defects and Quantum Seiberg-Witten Geometry, arXiv:1412.6081 [INSPIRE].
  46. [46]
    S. Nawata, Givental J-functions, Quantum integrable systems, AGT relation with surface operator, arXiv:1408.4132 [INSPIRE].
  47. [47]
    N. Wyllard, Instanton partition functions in N = 2 SU(N) gauge theories with a general surface operator and their W-algebra duals, JHEP 02 (2011) 114 [arXiv:1012.1355] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    S. Pasquetti, Factorisation of N = 2 Theories on the Squashed 3-Sphere, JHEP 04 (2012) 120 [arXiv:1111.6905] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    C. Beem, W. Peelaers, L. Rastelli and B. C. van Rees, Chiral algebras of class S, arXiv:1408.6522 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute for Advanced StudyPrincetonU.S.A.
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations