Perturbative search for dead-end CFTs

  • Yu NakayamaEmail author
Open Access


To explore the possibility of self-organized criticality, we look for CFTs without any relevant scalar deformations (a.k.a. dead-end CFTs) within power-counting renormalizable quantum field theories with a weakly coupled Lagrangian description. In three dimensions, the only candidates are pure (Abelian) gauge theories, which may be further deformed by Chern-Simons terms. In four dimensions, we show that there are infinitely many non-trivial candidates based on chiral gauge theories. Using the three-loop beta functions, we compute the gap of scaling dimensions above the marginal value, and it can be as small as \( \mathcal{O}\left(1{0}^{-5}\right) \) and robust against the perturbative corrections. These classes of candidates are very weakly coupled and our perturbative conclusion seems difficult to refute. Thus, the hypothesis that non-trivial dead-end CFTs do not exist is likely to be false in four dimensions.


Conformal and W Symmetry Renormalization Group 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Bak, C. Tang and K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59 (1987) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    H.J. Jensen, Self-organized criticality, Cambridge University Press, Cambridge U.K. (1998).CrossRefzbMATHGoogle Scholar
  3. [3]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Y. Nakayama, Scale invariance vs. conformal invariance, Phys. Rept. 569 (2015) 1 [arXiv:1302.0884] [INSPIRE].
  8. [8]
    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N} \) = 4 superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Jackiw and S.-Y. Pi, Tutorial on scale and conformal symmetries in diverse dimensions, J. Phys. A 44 (2011) 223001 [arXiv:1101.4886] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    S. El-Showk, Y. Nakayama and S. Rychkov, What Maxwell theory in D <> 4 teaches us about scale and conformal invariance, Nucl. Phys. B 848 (2011) 578 [arXiv:1101.5385] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Hermele, T. Senthil and M. Fisher Algebraic spin liquid as the mother of many competing orders, Phys. Rev. B 72 (2005) 104404 [Erratum ibid. 76 (2007) 149906] [cond-mat/0502215].
  12. [12]
    M. Hermele, Y. Ran, P. Lee and X.G. Wen, Properties of an algebraic spin liquid on the kagome lattice, Phys. Rev. B 77 (2008) 224413 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Lüscher, Chiral gauge theories revisited, hep-th/0102028 [INSPIRE].
  14. [14]
    E. Poppitz and M. Ünsal, Conformality or confinement: (IR)relevance of topological excitations, JHEP 09 (2009) 050 [arXiv:0906.5156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Appelquist, G.T. Fleming, M.F. Lin, E.T. Neil and D.A. Schaich, Lattice simulations and infrared conformality, Phys. Rev. D 84 (2011) 054501 [arXiv:1106.2148] [INSPIRE].ADSGoogle Scholar
  18. [18]
    T. DeGrand, Finite-size scaling tests for spectra in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions, Phys. Rev. D 84 (2011) 116901 [arXiv:1109.1237] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Aoki et al., Lattice study of conformality in twelve-flavor QCD, Phys. Rev. D 86 (2012) 054506 [arXiv:1207.3060] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Cheng, A. Hasenfratz, G. Petropoulos and D. Schaich, Scale-dependent mass anomalous dimension from Dirac eigenmodes, JHEP 07 (2013) 061 [arXiv:1301.1355] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.-I. Ishikawa, Y. Iwasaki, Y. Nakayama and T. Yoshie, Global structure of conformal theories in the SU(3) gauge theory, Phys. Rev. D 89 (2014) 114503 [arXiv:1310.5049] [INSPIRE].ADSGoogle Scholar
  22. [22]
    H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    I. Bars and S. Yankielowicz, Composite quarks and leptons as solutions of anomaly constraints, Phys. Lett. B 101 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Mojaza, Aspects of conformal gauge theories, Master Thesis, University of Southern Denmark, Denmark (2011).Google Scholar
  25. [25]
    G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP 08 (2011) 130 [arXiv:0902.2790] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J.D. Qualls and A.D. Shapere, Bounds on operator dimensions in 2D conformal field theories, JHEP 05 (2014) 091 [arXiv:1312.0038] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.D. Qualls, Universal bounds in even-spin CFTs, arXiv:1412.0383 [INSPIRE].
  29. [29]
    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
  30. [30]
    I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the monster, Academic, Boston U.S.A. (1988).zbMATHGoogle Scholar
  31. [31]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Polchinski and E. Silverstein, Dual purpose landscaping tools: small extra dimensions in AdS/CFT, arXiv:0908.0756 [INSPIRE].
  33. [33]
    S. de Alwis, R.K. Gupta, F. Quevedo and R. Valandro, On KKLT/CFT and LVS/CFT dualities, arXiv:1412.6999 [INSPIRE].
  34. [34]
    E. Kiritsis, Asymptotic freedom, asymptotic flatness and cosmology, JCAP 11 (2013) 011 [arXiv:1307.5873] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    L. Mihaila, Three-loop gauge beta function in non-simple gauge groups, PoS(RADCOR 2013)060.
  36. [36]
    A.G.M. Pickering, J.A. Gracey and D.R.T. Jones, Three loop gauge β-function for the most general single gauge coupling theory, Phys. Lett. B 510 (2001) 347 [Phys. Lett. B 512 (2001) 230] [Erratum ibid. B 535 (2002) 377] [hep-ph/0104247] [INSPIRE].

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Walter Burke Institute for Theoretical Physics, California Institute of TechnologyPasadenaU.S.A.

Personalised recommendations