Perturbative search for dead-end CFTs

Abstract

To explore the possibility of self-organized criticality, we look for CFTs without any relevant scalar deformations (a.k.a. dead-end CFTs) within power-counting renormalizable quantum field theories with a weakly coupled Lagrangian description. In three dimensions, the only candidates are pure (Abelian) gauge theories, which may be further deformed by Chern-Simons terms. In four dimensions, we show that there are infinitely many non-trivial candidates based on chiral gauge theories. Using the three-loop beta functions, we compute the gap of scaling dimensions above the marginal value, and it can be as small as \( \mathcal{O}\left(1{0}^{-5}\right) \) and robust against the perturbative corrections. These classes of candidates are very weakly coupled and our perturbative conclusion seems difficult to refute. Thus, the hypothesis that non-trivial dead-end CFTs do not exist is likely to be false in four dimensions.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    P. Bak, C. Tang and K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59 (1987) 381 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    H.J. Jensen, Self-organized criticality, Cambridge University Press, Cambridge U.K. (1998).

    Book  MATH  Google Scholar 

  3. [3]

    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    Y. Nakayama, Scale invariance vs. conformal invariance, Phys. Rept. 569 (2015) 1 [arXiv:1302.0884] [INSPIRE].

  8. [8]

    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N} \) = 4 superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    R. Jackiw and S.-Y. Pi, Tutorial on scale and conformal symmetries in diverse dimensions, J. Phys. A 44 (2011) 223001 [arXiv:1101.4886] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. [10]

    S. El-Showk, Y. Nakayama and S. Rychkov, What Maxwell theory in D <> 4 teaches us about scale and conformal invariance, Nucl. Phys. B 848 (2011) 578 [arXiv:1101.5385] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    M. Hermele, T. Senthil and M. Fisher Algebraic spin liquid as the mother of many competing orders, Phys. Rev. B 72 (2005) 104404 [Erratum ibid. 76 (2007) 149906] [cond-mat/0502215].

  12. [12]

    M. Hermele, Y. Ran, P. Lee and X.G. Wen, Properties of an algebraic spin liquid on the kagome lattice, Phys. Rev. B 77 (2008) 224413 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    M. Lüscher, Chiral gauge theories revisited, hep-th/0102028 [INSPIRE].

  14. [14]

    E. Poppitz and M. Ünsal, Conformality or confinement: (IR)relevance of topological excitations, JHEP 09 (2009) 050 [arXiv:0906.5156] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. Appelquist, G.T. Fleming, M.F. Lin, E.T. Neil and D.A. Schaich, Lattice simulations and infrared conformality, Phys. Rev. D 84 (2011) 054501 [arXiv:1106.2148] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    T. DeGrand, Finite-size scaling tests for spectra in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions, Phys. Rev. D 84 (2011) 116901 [arXiv:1109.1237] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    Y. Aoki et al., Lattice study of conformality in twelve-flavor QCD, Phys. Rev. D 86 (2012) 054506 [arXiv:1207.3060] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    A. Cheng, A. Hasenfratz, G. Petropoulos and D. Schaich, Scale-dependent mass anomalous dimension from Dirac eigenmodes, JHEP 07 (2013) 061 [arXiv:1301.1355] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    K.-I. Ishikawa, Y. Iwasaki, Y. Nakayama and T. Yoshie, Global structure of conformal theories in the SU(3) gauge theory, Phys. Rev. D 89 (2014) 114503 [arXiv:1310.5049] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    I. Bars and S. Yankielowicz, Composite quarks and leptons as solutions of anomaly constraints, Phys. Lett. B 101 (1981) 159 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Mojaza, Aspects of conformal gauge theories, Master Thesis, University of Southern Denmark, Denmark (2011).

  25. [25]

    G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP 08 (2011) 130 [arXiv:0902.2790] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    J.D. Qualls and A.D. Shapere, Bounds on operator dimensions in 2D conformal field theories, JHEP 05 (2014) 091 [arXiv:1312.0038] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    J.D. Qualls, Universal bounds in even-spin CFTs, arXiv:1412.0383 [INSPIRE].

  29. [29]

    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

  30. [30]

    I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the monster, Academic, Boston U.S.A. (1988).

    MATH  Google Scholar 

  31. [31]

    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    J. Polchinski and E. Silverstein, Dual purpose landscaping tools: small extra dimensions in AdS/CFT, arXiv:0908.0756 [INSPIRE].

  33. [33]

    S. de Alwis, R.K. Gupta, F. Quevedo and R. Valandro, On KKLT/CFT and LVS/CFT dualities, arXiv:1412.6999 [INSPIRE].

  34. [34]

    E. Kiritsis, Asymptotic freedom, asymptotic flatness and cosmology, JCAP 11 (2013) 011 [arXiv:1307.5873] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    L. Mihaila, Three-loop gauge beta function in non-simple gauge groups, PoS(RADCOR 2013)060.

  36. [36]

    A.G.M. Pickering, J.A. Gracey and D.R.T. Jones, Three loop gauge β-function for the most general single gauge coupling theory, Phys. Lett. B 510 (2001) 347 [Phys. Lett. B 512 (2001) 230] [Erratum ibid. B 535 (2002) 377] [hep-ph/0104247] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu Nakayama.

Additional information

ArXiv ePrint: 1501.02280

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakayama, Y. Perturbative search for dead-end CFTs. J. High Energ. Phys. 2015, 46 (2015). https://doi.org/10.1007/JHEP05(2015)046

Download citation

Keywords

  • Conformal and W Symmetry
  • Renormalization Group