Advertisement

Resumming the string perturbation series

  • Alba Grassi
  • Marcos Mariño
  • Szabolcs ZakanyEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We use the AdS/CFT correspondence to study the resummation of a perturbative genus expansion appearing in the type II superstring dual of ABJM theory. Although the series is Borel summable, its Borel resummation does not agree with the exact non-perturbative answer due to the presence of complex instantons. The same type of behavior appears in the WKB quantization of the quartic oscillator in Quantum Mechanics, which we analyze in detail as a toy model for the string perturbation series. We conclude that, in these examples, Borel summability is not enough for extracting non-perturbative information, due to non-perturbative effects associated to complex instantons. We also analyze the resummation of the genus expansion for topological string theory on local \( {\mathrm{\mathbb{P}}}^1\times {\mathrm{\mathbb{P}}}^1 \), which is closely related to ABJM theory. In this case, the non-perturbative answer involves membrane instantons computed by the refined topological string, which are crucial to produce a well-defined result. We give evidence that the Borel resummation of the perturbative series requires such a non-perturbative sector.

Keywords

Nonperturbative Effects 1/N Expansion Topological Strings Matrix Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Caliceti, M. Meyer-Hermann, P. Ribeca, A. Surzhykov and U.D. Jentschura, From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions, Phys. Rept. 446 (2007) 1 [arXiv:0707.1596] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Mariño, Lectures on non-perturbative effects in large-N gauge theories, matrix models and strings, Fortsch. Phys. 62 (2014) 455 [arXiv:1206.6272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C.M. Bender and T.T. Wu, Anharmonic oscillator, Phys. Rev. 184 (1969) 1231 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C.M. Bender and T.T. Wu, Anharmonic oscillator. 2: a study of perturbation theory in large order, Phys. Rev. D 7 (1973) 1620 [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Graffi, V. Grecchi and B. Simon, Borel summability: application to the anharmonic oscillator, Phys. Lett. B 32 (1970) 631 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Zinn-Justin, Multi-instanton contributions in quantum mechanics, Nucl. Phys. B 192 (1981) 125 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Zinn-Justin, Multi-instanton contributions in quantum mechanics. 2, Nucl. Phys. B 218 (1983) 333 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results I: conjectures, WKB expansions and instanton interactions, Annals Phys. 313 (2004) 197 [quant-ph/0501136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results II: specific cases, higher-order effects and numerical calculations, Annals Phys. 313 (2004) 269 [quant-ph/0501137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S.H. Shenker, The strength of nonperturbative effects in string theory, in Random surfaces and quantum gravity, O. Álvarez, E. Marinari and P. Windey eds., Plenum, New York U.S.A. (1992).Google Scholar
  12. [12]
    D.J. Gross and V. Periwal, String perturbation theory diverges, Phys. Rev. Lett. 60 (1988) 2105 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    P.F. Mende and H. Ooguri, Borel summation of string theory for Planck scale scattering, Nucl. Phys. B 339 (1990) 641 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    I.R. Klebanov, J.M. Maldacena and N. Seiberg, Unitary and complex matrix models as 1D type 0 strings, Commun. Math. Phys. 252 (2004) 275 [hep-th/0309168] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Sen, S-duality improved superstring perturbation theory, JHEP 11 (2013) 029 [arXiv:1304.0458] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R. Balian, G. Parisi and A. Voros, Discrepancies from asymptotic series and their relation to complex classical trajectories, Phys. Rev. Lett. 41 (1978) 1141.ADSCrossRefGoogle Scholar
  21. [21]
    R. Balian, G. Parisi and A. Voros, Quartic oscillator, in Feynman path integrals, S. Albeverio et al., Lecture Notes in Physics 106, Spinger, Berlin (1979).Google Scholar
  22. [22]
    M. Mariño and P. Putrov, Exact results in ABJM theory from topological strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].MathSciNetGoogle Scholar
  24. [24]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].
  26. [26]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton effects in ABJM theory from Fermi gas approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Voros, The return of the quartic oscillator. The complex WKB method Ann. Inst. H. Poincaré A 39 (1983) 211.MathSciNetzbMATHGoogle Scholar
  28. [28]
    T.M. Seara and D. Sauzin, Ressumació de Borel i teoria de la ressurgència, Bull. Soc. Cat. de Mat. 18 (2003) 19.MathSciNetGoogle Scholar
  29. [29]
    S. Garoufalidis, A. Its, A. Kapaev and M. Mariño, Asymptotics of the instantons of Painlevé I, arXiv:1002.3634 [INSPIRE].
  30. [30]
    I. Aniceto and R. Schiappa, Nonperturbative ambiguities and the reality of resurgent transseries, Commun. Math. Phys. 335 (2015) 183 [arXiv:1308.1115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    G.V. Dunne and M. Ünsal, Resurgence and trans-series in quantum field theory: the CP(N−1) model, JHEP 11 (2012) 170 [arXiv:1210.2423][INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Cherman, D. Dorigoni, G.V. Dunne and M. Ünsal, Resurgence in quantum field theory: nonperturbative effects in the principal chiral model, Phys. Rev. Lett. 112 (2014) 021601 [arXiv:1308.0127] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    I. Aniceto, R. Schiappa and M. Vonk, The resurgence of instantons in string theory, Commun. Num. Theor. Phys. 6 (2012) 339 [arXiv:1106.5922] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    R.C. Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent transseries and the holomorphic anomaly, arXiv:1308.1695 [INSPIRE].
  35. [35]
    E. Delabaere, H. Dillinger and F. Pham, Exact semiclassical expansions for one-dimensional quantum oscillators, J. Math. Phys. 38 (1997) 6126.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    E. Brézin, J.-C. Le Guillou and J. Zinn-Justin, Perturbation theory at large order. 2. Role of the vacuum instability, Phys. Rev. D 15 (1977) 1558 [INSPIRE].ADSGoogle Scholar
  37. [37]
    G. Basar, G.V. Dunne and M. Ünsal, Resurgence theory, ghost-instantons and analytic continuation of path integrals, JHEP 10 (2013) 041 [arXiv:1308.1108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    J.L. Dunham, The Wentzel-Brillouin-Kramers method of solving the wave equation, Phys. Rev. 41 (1932) 713.ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    H. Taseli, Accurate computation of the energy spectrum for potentials with multiminima, Int. J. Quant. Chem. 46 (1993) 319.CrossRefGoogle Scholar
  40. [40]
    K. Banerjee, S.P. Bhatnagar, V. Choudhry, S.S. Kanwal, The anharmonic oscillator, Proc. Roy. Soc. London A 1703 (1978) 360.Google Scholar
  41. [41]
    U.D. Jentschura, The resummation of nonalternating divergent perturbative expansions, Phys. Rev. D 62 (2000) 076001 [hep-ph/0001135] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  43. [43]
    J.G. Russo, A note on perturbation series in supersymmetric gauge theories, JHEP 06 (2012) 038 [arXiv:1203.5061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    J. Bagger, N. Lambert, S. Mukhi and C. Papageorgakis, Multiple membranes in M-theory, Phys. Rept. 527 (2013) 1 [arXiv:1203.3546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].zbMATHGoogle Scholar
  46. [46]
    O. Bergman and S. Hirano, Anomalous radius shift in AdS 4 /CFT 3, JHEP 07 (2009) 016 [arXiv:0902.1743] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    O. Aharony, A. Hashimoto, S. Hirano and P. Ouyang, D-brane charges in gravitational duals of 2 + 1 dimensional gauge theories and duality cascades, JHEP 01 (2010) 072 [arXiv:0906.2390] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A one-loop test of quantum supergravity, Class. Quant. Grav. 31 (2014) 015012 [arXiv:1210.6057] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    M. Hanada et al., Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Pasquetti and R. Schiappa, Borel and stokes nonperturbative phenomena in topological string theory and c = 1 matrix models, Annales Henri Poincaré 11 (2010) 351 [arXiv:0907.4082] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    A.B. Zamolodchikov, Painlevé III and 2D polymers, Nucl. Phys. B 432 (1994) 427 [hep-th/9409108] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    C.A. Tracy and H. Widom, Proofs of two conjectures related to the thermodynamic Bethe ansatz, Commun. Math. Phys. 179 (1996) 667 [solv-int/9509003] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    P. Putrov and M. Yamazaki, Exact ABJM partition function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact results on the ABJM Fermi gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton bound states in ABJM theory, JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Kallen and M. Mariño, Instanton effects and quantum spectral curves, arXiv:1308.6485 [INSPIRE].
  58. [58]
    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    B. Haghighat, A. Klemm and M. Rauch, Integrability of the holomorphic anomaly equations, JHEP 10 (2008) 097 [arXiv:0809.1674] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].
  64. [64]
    A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Zommerfeld integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    M. Aganagic et al., Quantum geometry of refined topological strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    M.-x. Huang, A. Klemm, J. Reuter and M. Schiereck, Quantum geometry of del Pezzo surfaces in the Nekrasov-Shatashvili limit, JHEP 02 (2015) 031 [arXiv:1401.4723] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    S. Hikami and E. Brézin, Large order behavior of the 1/N expansion in zero-dimensions and one-dimensions, J. Phys. A 12 (1979) 759 [INSPIRE].ADSGoogle Scholar
  68. [68]
    P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices, Phys. Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Département de Physique Théorique et section de MathématiquesUniversité de GenèveGenèveSwitzerland

Personalised recommendations