Bulk emergence and the RG flow of entanglement entropy

Open Access
Regular Article - Theoretical Physics

Abstract

We further develop perturbative methods used to calculate entanglement entropy (EE) away from an interacting CFT fixed point. At second order we find certain universal terms in the renormalized EE which were predicted previously from holography and which we find hold universally for relevant deformations of any CFT in any dimension. We use both replica methods and direct methods to calculate the EE and in both cases find a non-local integral expression involving the CFT two point function. We show that this integral expression can be written as a local integral over a higher dimensional bulk modular hamiltonian in an emergent AdS space-time. This bulk modular hamiltonian is associated to an emergent scalar field dual to the deforming operator. We generalize to arbitrary spatially dependent couplings where a linearized metric emerges naturally as a way of efficiently encoding the field theory entanglement: by demanding that Einstein’s equations coupled to the bulk scalar field are satisfied, we show that EE can be calculated as the area of this metric. Not only does this show a direct emergence of a higher dimensional gravitational theory from any CFT, it allows for effective evaluation of the the integrals required to calculate EE perturbativly. Our results can also be interpreted as relating the non-locality of the modular hamiltonian for a spherical region in non-CFTs and the non-locality of the holographic bulk to boundary map.

Keywords

AdS-CFT Correspondence Renormalization Group 

References

  1. [1]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].MATHGoogle Scholar
  3. [3]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96 (2006) 110405 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetMATHGoogle Scholar
  17. [17]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    T. Nishioka, Relevant Perturbation of Entanglement Entropy and Stationarity, Phys. Rev. D 90 (2014) 045006 [arXiv:1405.3650] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    V. Rosenhaus and M. Smolkin, Entanglement Entropy for Relevant and Geometric Perturbations, JHEP 02 (2015) 015 [arXiv:1410.6530] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    V. Rosenhaus and M. Smolkin, Entanglement entropy, planar surfaces and spectral functions, JHEP 09 (2014) 119 [arXiv:1407.2891] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    V. Rosenhaus and M. Smolkin, Entanglement Entropy Flow and the Ward Identity, Phys. Rev. Lett. 113 (2014) 261602 [arXiv:1406.2716] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Smolkin and S.N. Solodukhin, Correlation functions on conical defects, Phys. Rev. D 91 (2015) 044008 [arXiv:1406.2512] [INSPIRE].ADSGoogle Scholar
  27. [27]
    V. Rosenhaus and M. Smolkin, Entanglement Entropy: A Perturbative Calculation, JHEP 12 (2014) 179 [arXiv:1403.3733] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from CFT, JHEP 06 (2014) 096 [arXiv:1402.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Universal correction to higher spin entanglement entropy, Phys. Rev. D 90 (2014) 041903 [arXiv:1405.0015] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Datta, J.R. David and S.P. Kumar, Conformal perturbation theory and higher spin entanglement entropy on the torus, JHEP 04 (2015) 041 [arXiv:1412.3946] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetMATHGoogle Scholar
  33. [33]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Cardy, Some results on the mutual information of disjoint regions in higher dimensions, J. Phys. A 46 (2013) 285402 [arXiv:1304.7985] [INSPIRE].MathSciNetMATHGoogle Scholar
  35. [35]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].MathSciNetGoogle Scholar
  36. [36]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  38. [38]
    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  39. [39]
    L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic Calculations of Renyi Entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    M. Le Bellac, Thermal field theory, Cambridge University Press (2000).Google Scholar
  41. [41]
    A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Rényi entropy, JHEP 01 (2015) 080 [arXiv:1407.8171] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Belin, A. Maloney and S. Matsuura, Holographic Phases of Renyi Entropies, JHEP 12 (2013) 050 [arXiv:1306.2640] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  50. [50]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    A.J. Amsel and D. Marolf, Energy Bounds in Designer Gravity, Phys. Rev. D 74 (2006) 064006 [hep-th/0605101] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].MathSciNetMATHGoogle Scholar
  53. [53]
    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    N. Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    J. Camps, Generalized entropy and higher derivative Gravity, JHEP 03 (2014) 070 [arXiv:1310.6659] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    A. Bhattacharyya and M. Sharma, On entanglement entropy functionals in higher derivative gravity theories, JHEP 10 (2014) 130 [arXiv:1405.3511] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    R.-X. Miao and W.-z. Guo, Holographic Entanglement Entropy for the Most General Higher Derivative Gravity, arXiv:1411.5579 [INSPIRE].
  59. [59]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography, JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglementthermodynamics’, JHEP 04 (2014) 195 [arXiv:1308.3716] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    B. Swingle and M. Van Raamsdonk, Universality of Gravity from Entanglement, arXiv:1405.2933 [INSPIRE].
  65. [65]
    T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    S. Banerjee, A. Bhattacharyya, A. Kaviraj, K. Sen and A. Sinha, Constraining gravity using entanglement in AdS/CFT, JHEP 05 (2014) 029 [arXiv:1401.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Tomography from Entanglement, arXiv:1412.1879 [INSPIRE].
  68. [68]
    N. Lashkari, C. Rabideau, P. Sabella-Garnier and M. Van Raamsdonk, Inviolable energy conditions from entanglement inequalities, arXiv:1412.3514 [INSPIRE].
  69. [69]
    J. Bhattacharya, V.E. Hubeny, M. Rangamani and T. Takayanagi, Entanglement density and gravitational thermodynamics, arXiv:1412.5472 [INSPIRE].
  70. [70]
    A. Buchel, R.C. Myers and A. van Niekerk, Universality of Abrupt Holographic Quenches, Phys. Rev. Lett. 111 (2013) 201602 [arXiv:1307.4740] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S.R. Das, D.A. Galante and R.C. Myers, Universality in fast quantum quenches, JHEP 02 (2015) 167 [arXiv:1411.7710] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  73. [73]
    L.A. Rubel, Necessary and Sufficient Conditions for Carlsons Theorem on Entire Functions, Trans. Am. Math. Soc. 83 (1956) 417.MathSciNetMATHGoogle Scholar
  74. [74]
    M.A. Metlitski, C.A. Fuertes and S. Sachdev, Entanglement entropy in the O (N) model, Phys. Rev. B 80 (2009) 115122 [arXiv:0904.4477].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of IllinoisUrbanaU.S.A.

Personalised recommendations