Branes are waves and monopoles

Open Access
Regular Article - Theoretical Physics

Abstract

In a recent paper it was shown that fundamental strings are null waves in Double Field Theory. Similarly, membranes are waves in exceptional extended geometry. Here the story is continued by showing how various branes are Kaluza-Klein monopoles of these higher dimensional theories. Examining the specific case of the E7 exceptional extended geometry, we see that all branes are both waves and monopoles. Along the way we discuss the O(d, d) transformation of localized brane solutions not associated to an isometry and how true T-duality emerges in Double Field Theory when the background possesses isometries.

Keywords

p-branes M-Theory String Duality 

References

  1. [1]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    W. Siegel, Manifest duality in low-energy superstrings, hep-th/9308133 [INSPIRE].
  8. [8]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  13. [13]
    O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  16. [16]
    I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].
  18. [18]
    C.D.A. Blair, E. Malek and A.J. Routh, An O(D, D) invariant Hamiltonian action for the superstring, Class. Quant. Grav. 31 (2014) 205011 [arXiv:1308.4829] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    D.S. Berman, C.D.A. Blair, E. Malek and M.J. Perry, The O D,D geometry of string theory, Int. J. Mod. Phys. A 29 (2014) 1450080 [arXiv:1303.6727] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    C.D.A. Blair, Non-commutativity and non-associativity of the doubled string in non-geometric backgrounds, arXiv:1405.2283 [INSPIRE].
  21. [21]
    H. Wu and H. Yang, Double field theory inspired cosmology, JCAP 07 (2014) 024 [arXiv:1307.0159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    H. Wu and H. Yang, New cosmological signatures from double field theory, arXiv:1312.5580 [INSPIRE].
  23. [23]
    C.-T. Ma and C.-M. Shen, Cosmological implications from O(D, D), Fortsch. Phys. 62 (2014) 921 [arXiv:1405.4073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × R + generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry II: E d(d) × R + and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    D.S. Berman, E.T. Musaev and M.J. Perry, Boundary terms in generalized geometry and doubled field theory, Phys. Lett. B 706 (2011) 228 [arXiv:1110.3097] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP 04 (2013) 147 [Erratum ibid. 11 (2013) 210] [arXiv:1302.1652] [INSPIRE].
  36. [36]
    M. Cederwall, Non-gravitational exceptional supermultiplets, JHEP 07 (2013) 025 [arXiv:1302.6737] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    C. Strickland-Constable, Subsectors, Dynkin diagrams and new generalised geometries, arXiv:1310.4196 [INSPIRE].
  39. [39]
    J.-H. Park and Y. Suh, U-gravity: SL(N), JHEP 06 (2014) 102 [arXiv:1402.5027] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  40. [40]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    F. Englert, L. Houart, A. Taormina and P.C. West, The symmetry of M theories, JHEP 09 (2003) 020 [hep-th/0304206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    A. Kleinschmidt and P.C. West, Representations of G+++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    O. Hohm, D. Lüst and B. Zwiebach, The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    G. Aldazabal, D. Marques and C. Núñez, Double field theory: a pedagogical review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    R. Sorkin, Kaluza-Klein monopole, Phys. Rev. Lett. 51 (1983) 87 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    D.J. Gross and M.J. Perry, Magnetic monopoles in Kaluza-Klein theories, Nucl. Phys. B 226 (1983) 29 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    P.K. Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B 350 (1995) 184 [hep-th/9501068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    J. Berkeley, D.S. Berman and F.J. Rudolph, Strings and branes are waves, JHEP 06 (2014) 006 [arXiv:1403.7198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    S. Jensen, The KK-monopole/N S5-brane in doubled geometry, JHEP 07 (2011) 088 [arXiv:1106.1174] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    T. Kimura and S. Sasaki, Gauged linear σ-model for exotic five-brane, Nucl. Phys. B 876 (2013) 493 [arXiv:1304.4061] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    T. Kimura and S. Sasaki, Worldsheet instanton corrections to \( 5\frac{2}{2} \) -brane geometry, JHEP 08 (2013) 126 [arXiv:1305.4439] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    T. Kimura and S. Sasaki, Worldsheet description of exotic five-brane with two gauged isometries, JHEP 03 (2014) 128 [arXiv:1310.6163] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T. Kimura, S. Sasaki and M. Yata, World-volume effective actions of exotic five-branes, JHEP 07 (2014) 127 [arXiv:1404.5442] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    E.P. Verlinde, Global aspects of electric-magnetic duality, Nucl. Phys. B 455 (1995) 211 [hep-th/9506011] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    E. Witten, On S duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    T. Ortín, Gravity and strings, Cambridge University Press, Cambridge U.K. (2004) [INSPIRE].CrossRefMATHGoogle Scholar
  60. [60]
    G. Papadopoulos, Seeking the balance: patching double and exceptional field theories, JHEP 10 (2014) 089 [arXiv:1402.2586] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    D.S. Berman, M. Cederwall and M.J. Perry, Global aspects of double geometry, JHEP 09 (2014) 066 [arXiv:1401.1311] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    M. Cederwall, T-duality and non-geometric solutions from double geometry, Fortsch. Phys. 62 (2014) 942 [arXiv:1409.4463] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    D. Tong, NS5-branes, T duality and world sheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    T. Kimura and M. Yata, Gauged linear σ-model with F-term for A-type ALE space, Prog. Theor. Exp. Phys. 2014 (2014) 073B01 [arXiv:1402.5580] [INSPIRE].MATHGoogle Scholar
  66. [66]
    T. Kimura and M. Yata, T-duality transformation of gauged linear σ-model with F-term, Nucl. Phys. B 887 (2014) 136 [arXiv:1406.0087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].ADSGoogle Scholar
  71. [71]
    O. Hohm and H. Samtleben, Exceptional field theory II: E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].ADSGoogle Scholar
  72. [72]
    O. Hohm and H. Samtleben, Exceptional field theory III: E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].ADSGoogle Scholar
  73. [73]
    H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E 7(7) exceptional field theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  74. [74]
    D.S. Berman and F.J. Rudolph, Strings, branes and the self-dual solutions of exceptional field theory, arXiv:1412.2768 [INSPIRE].
  75. [75]
    D.S. Berman and L.C. Tadrowski, M-theory brane deformations, Nucl. Phys. B 795 (2008) 201 [arXiv:0709.3059] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS five-branes and holography, JHEP 10 (1998) 004 [hep-th/9808149] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Queen Mary University of London, Centre for Research in String Theory, School of PhysicsLondonU.K.

Personalised recommendations