Advertisement

Soft drop

  • Andrew J. Larkoski
  • Simone Marzani
  • Gregory Soyez
  • Jesse Thaler
Open Access
Article

Abstract

We introduce a new jet substructure technique called “soft drop declustering”, which recursively removes soft wide-angle radiation from a jet. The soft drop algorithm depends on two parameters — a soft threshold z cut and an angular exponent β — with the β = 0 limit corresponding roughly to the (modified) mass drop procedure. To gain an analytic understanding of soft drop and highlight the β dependence, we perform resummed calculations for three observables on soft-dropped jets: the energy correlation functions, the groomed jet radius, and the energy loss due to soft drop. The β = 0 limit of the energy loss is particularly interesting, since it is not only “Sudakov safe” but also largely insensitive to the value of the strong coupling constant. While our calculations are strictly accurate only to modified leading-logarithmic order, we also include a discussion of higher-order effects such as multiple emissions and (the absence of) non-global logarithms. We compare our analytic results to parton shower simulations and find good agreement, and we also estimate the impact of non-perturbative effects such as hadronization and the underlying event. Finally, we demonstrate how soft drop can be used for tagging boosted W bosons, and we speculate on the potential advantages of using soft drop for pileup mitigation.

Keywords

QCD Phenomenology Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Abdesselam et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Altheimer et al., Boosted objects and jet substructure at the LHC, arXiv:1311.2708 [INSPIRE].
  4. [4]
    M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Z. Phys. C62 (1994) 127.ADSGoogle Scholar
  5. [5]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L.G. Almeida et al., Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].ADSGoogle Scholar
  8. [8]
    L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top Jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Brooijmans, High pt hadronic top quark identification, ATL-PHYS-CONF-2008-008 (2008).
  11. [11]
    J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    CMS collaboration, A Cambridge-Aachen (C-A) based Jet Algorithm for boosted top-jet tagging, CMS-PAS-JME-09-001 (2009).
  13. [13]
    CMS collaboration, Search for High Mass tt Resonances in the All-Hadronic Mode, CMS-PAS-EXO-09-002 (2009).
  14. [14]
    S. Rappoccio, A new top jet tagging algorithm for highly boosted top jets, CMS-CR-2009-255 (2009).Google Scholar
  15. [15]
    ATLAS collaboration, Reconstruction of high mass \( t\overline{t} \) resonances in the lepton + jets channel, ATL-PHYS-PUB-2009-081 (2009).
  16. [16]
    G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs Boson in New Physics Events using Jet Substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [INSPIRE].ADSGoogle Scholar
  17. [17]
    G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering Higgs Bosons of the MSSM using Jet Substructure, Phys. Rev. D 82 (2010) 095012 [arXiv:1006.1656] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C.-R. Chen, M.M. Nojiri and W. Sreethawong, Search for the Elusive Higgs Boson Using Jet Structure at LHC, JHEP 11 (2010) 012 [arXiv:1006.1151] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Hackstein and M. Spannowsky, Boosting Higgs discovery: The Forgotten channel, Phys. Rev. D 82 (2010) 113012 [arXiv:1008.2202] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Falkowski, D. Krohn, L.-T. Wang, J. Shelton and A. Thalapillil, Unburied Higgs boson: Jet substructure techniques for searching for Higgsdecay into gluons, Phys. Rev. D 84 (2011) 074022 [arXiv:1006.1650] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Katz, M. Son and B. Tweedie, Jet Substructure and the Search for Neutral Spin-One Resonances in Electroweak Boson Channels, JHEP 03 (2011) 011 [arXiv:1010.5253] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y. Cui, Z. Han and M.D. Schwartz, W-jet Tagging: Optimizing the Identification of Boosted Hadronically-Decaying W Bosons, Phys. Rev. D 83 (2011) 074023 [arXiv:1012.2077] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.-H. Kim, Rest Frame Subjet Algorithm With SISCone Jet For Fully Hadronic Decaying Higgs Search, Phys. Rev. D 83 (2011) 011502 [arXiv:1011.1493] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Gallicchio et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    ATLAS collaboration, Prospects for top anti-top resonance searches using early atlas data, ATL-PHYS-PUB-2010-008.
  28. [28]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruction with Tagged Tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template Overlap Method for Massive Jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Jankowiak and A.J. Larkoski, Jet Substructure Without Trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Hook, M. Jankowiak and J.G. Wacker, Jet Dipolarity: Top Tagging with Color Flow, JHEP 04 (2012) 007 [arXiv:1102.1012] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].ADSGoogle Scholar
  35. [35]
    L.G. Almeida et al., Three-particle templates for a boosted Higgs boson, Phys. Rev. D 85 (2012) 114046 [arXiv:1112.1957] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S.D. Ellis, A. Hornig, T.S. Roy, D. Krohn and M.D. Schwartz, Qjets: A Non-Deterministic Approach to Tree-Based Jet Substructure, Phys. Rev. Lett. 108 (2012) 182003 [arXiv:1201.1914] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Backovic, J. Juknevich and G. Perez, Boosting the Standard Model Higgs Signal with the Template Overlap Method, JHEP 07 (2013) 114 [arXiv:1212.2977] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Cohen, E. Izaguirre, M. Lisanti and H.K. Lou, Jet Substructure by Accident, JHEP 03 (2013) 161 [arXiv:1212.1456] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Curtin, R. Essig and B. Shuve, Boosted Multijet Resonances and New Color-Flow Variables, Phys. Rev. D 88 (2013) 034019 [arXiv:1210.5523] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. El Hedri, A. Hook, M. Jankowiak and J.G. Wacker, Learning How to Count: A High Multiplicity Search for the LHC, JHEP 08 (2013) 136 [arXiv:1302.1870] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Backovic, O. Gabizon, J. Juknevich, G. Perez and Y. Soreq, Measuring boosted tops in semi-leptonic tt events for the standard model and beyond, JHEP 04 (2014) 176 [arXiv:1311.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Gouzevitch et al., Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production, JHEP 07 (2013) 148 [arXiv:1303.6636] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    Y.-T. Chien, Telescoping Jets: Multiple Event Interpretations with Multiple Rs, arXiv:1304.5240 [INSPIRE].
  46. [46]
    D. Kahawala, D. Krohn and M.D. Schwartz, Jet Sampling: Improving Event Reconstruction through Multiple Interpretations, JHEP 06 (2013) 006 [arXiv:1304.2394] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Gallicchio and M.D. Schwartz, Quark and Gluon Tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Gallicchio and M.D. Schwartz, Quark and Gluon Jet Substructure, JHEP 04 (2013) 090 [arXiv:1211.7038] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet Charge at the LHC, Phys. Rev. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    CMS collaboration, Search for a Higgs boson in the decay channel H to ZZ *\( q\overline{q}{\ell^{-}}{l^{+}} \) in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].ADSGoogle Scholar
  51. [51]
    F. Pandolfi and D. Del Re, Search for the Standard Model Higgs Boson in the HZZllqq Decay Channel at CMS, PhD thesis, Zurich, ETH (2012).Google Scholar
  52. [52]
    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  56. [56]
    R. Alon, E. Duchovni, G. Perez, A.P. Pranko and P.K. Sinervo, A Data-driven method of pile-up correction for the substructure of massive jets, Phys. Rev. D 84 (2011) 114025 [arXiv:1101.3002] [INSPIRE].ADSGoogle Scholar
  57. [57]
    G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Tseng and H. Evans, Sequential recombination algorithm for jet clustering and background subtraction, Phys. Rev. D 88 (2013) 014044 [arXiv:1304.1025] [INSPIRE].ADSGoogle Scholar
  59. [59]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D. Krohn, M.D. Schwartz, M. Low and L.-T. Wang, Jet Cleansing: Pileup Removal at High Luminosity, arXiv:1309.4777 [INSPIRE].
  62. [62]
    ATLAS collaboration, Jet substructure in ATLAS, arXiv:1110.1094 [ATL-PHYS-PROC-2011-142] [INSPIRE].
  63. [63]
    ATLAS collaboration, Search for resonances decaying into top-quark pairs using fully hadronic decays in pp collisions with ATLAS at \( \sqrt{s} \) = 7 TeV, JHEP 01 (2013) 116 [arXiv:1211.2202] [INSPIRE].ADSGoogle Scholar
  64. [64]
    ATLAS collaboration, Search for pair production of massive particles decaying into three quarks with the ATLAS detector in \( \sqrt{s} \) = 7 TeV pp collisions at the LHC, JHEP 12 (2012) 086 [arXiv:1210.4813] [INSPIRE].ADSGoogle Scholar
  65. [65]
    ATLAS collaboration, ATLAS measurements of the properties of jets for boosted particle searches, Phys. Rev. D 86 (2012) 072006 [arXiv:1206.5369] [INSPIRE].ADSGoogle Scholar
  66. [66]
    ATLAS collaboration, Measurement of jet mass and substructure for inclusive jets in \( \sqrt{s} \) = 7 tev pp collisions with the atlas experiment, ATLAS-CONF-2011-073 (2011).Google Scholar
  67. [67]
    ATLAS collaboration, Light-quark and gluon jets in ATLAS, ATLAS-CONF-2011-053 (2011).
  68. [68]
    ATLAS collaboration, Jet mass and substructure of inclusive jets in \( \sqrt{s} \) = 7 TeV pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE].ADSGoogle Scholar
  69. [69]
    ATLAS collaboration, Studies of the impact and mitigation of pile-up on large-R and groomed jets in ATLAS at \( \sqrt{s} \) = 7 TeV, ATLAS-CONF-2012-066 (2012).
  70. [70]
    ATLAS collaboration, Performance of large-r jets and jet substructure reconstruction with the atlas detector, ATLAS-CONF-2012-065 (2012).
  71. [71]
    ATLAS collaboration, Studies of the impact and mitigation of pile-up on large-r and groomed jets in atlas at \( \sqrt{s} \) = 7 tev, ATLAS-CONF-2012-066 (2012).Google Scholar
  72. [72]
    ATLAS collaboration, Measurement of jet shapes in top-quark pair events at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Eur. Phys. J. C 73 (2013) 2676 [arXiv:1307.5749] [INSPIRE].ADSGoogle Scholar
  73. [73]
    ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, JHEP 09 (2013) 076 [arXiv:1306.4945] [INSPIRE].ADSGoogle Scholar
  74. [74]
    ATLAS collaboration, Pile-up subtraction and suppression for jets in ATLAS, ATLAS-CONF-2013-083 (2013).
  75. [75]
    ATLAS collaboration, Performance of boosted top quark identification in 2012 ATLAS data, ATLAS-CONF-2013-084 (2013).
  76. [76]
    ATLAS collaboration, Performance of pile-up subtraction for jet shapes, ATLAS-CONF-2013-085 (2013).
  77. [77]
    ATLAS collaboration, Jet Charge Studies with the ATLAS Detector Using \( \sqrt{s} \) = 8 TeV Proton-Proton Collision Data, ATLAS-CONF-2013-086 (2013).
  78. [78]
    ATLAS collaboration, Performance and Validation of Q-Jets at the ATLAS Detector in pp Collisions at \( \sqrt{s} \) = 8 TeV in 2012, ATLAS-CONF-2013-087 (2013).
  79. [79]
    ATLAS collaboration, Identification and Tagging of Double b-hadron jets with the ATLAS Detector, ATLAS-CONF-2012-100 (2012).
  80. [80]
    CMS collaboration, Jet substructure algorithms, CMS-PAS-JME-10-013 (2011).Google Scholar
  81. [81]
    CMS collaboration, Search for BSM ttbar Production in the Boosted All-Hadronic Final State, CMS-PAS-EXO-11-006 (2011).
  82. [82]
    CMS collaboration, Measurement of the subjet multiplicity in dijet events from proton-proton collisions at \( \sqrt{s} \) = 7 TeV, CMS-PAS-QCD-10-041 (2010).Google Scholar
  83. [83]
    CMS collaboration, Measurement of the underlying event activity in pp collisions at \( \sqrt{s} \) = 0.9 and 7 TeV with the novel jet-area/median approach, JHEP 08 (2012) 130 [arXiv:1207.2392] [INSPIRE].ADSGoogle Scholar
  84. [84]
    CMS collaboration, Performance of quark/gluon discrimination in 8 TeV pp data, CMS-PAS-JME-13-002 (2013).
  85. [85]
    CMS collaboration, Pileup Jet Identification, CMS-PAS-JME-13-005 (2013).
  86. [86]
    CMS collaboration, Performance of b tagging at \( \sqrt{s} \) = 8 TeV in multijet, ttbar and boosted topology events, CMS-PAS-BTV-13-001 (2013).
  87. [87]
    CMS collaboration, Identifying Hadronically Decaying Vector Bosons Merged into a Single Jet, CMS-PAS-JME-13-006 (2013).
  88. [88]
    CMS collaboration, Shape, transverse size and charged hadron multiplicity of jets in pp collisions at 7 TeV, JHEP 06 (2012) 160 [arXiv:1204.3170] [INSPIRE].ADSGoogle Scholar
  89. [89]
    CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].ADSGoogle Scholar
  90. [90]
    H.-n. Li, Z. Li and C.-P. Yuan, QCD resummation for light-particle jets, Phys. Rev. D 87 (2013) 074025 [arXiv:1206.1344] [INSPIRE].ADSGoogle Scholar
  91. [91]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-pT jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  93. [93]
    M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z + jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    Y.-T. Chien, R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of Jet Mass at Hadron Colliders, Phys. Rev. D 87 (2013) 014010 [arXiv:1208.0010] [INSPIRE].ADSGoogle Scholar
  95. [95]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].ADSGoogle Scholar
  96. [96]
    M. Rubin, Non-Global Logarithms in Filtered Jet Algorithms, JHEP 05 (2010) 005 [arXiv:1002.4557] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    J.R. Walsh and S. Zuberi, Factorization Constraints on Jet Substructure, arXiv:1110.5333 [INSPIRE].
  98. [98]
    I. Feige, M.D. Schwartz, I.W. Stewart and J. Thaler, Precision Jet Substructure from Boosted Event Shapes, Phys. Rev. Lett. 109 (2012) 092001 [arXiv:1204.3898] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    M. Field, G. Gur-Ari, D.A. Kosower, L. Mannelli and G. Perez, Three-Prong Distribution of Massive Narrow QCD Jets, Phys. Rev. D 87 (2013) 094013 [arXiv:1212.2106] [INSPIRE].ADSGoogle Scholar
  100. [100]
    A.J. Larkoski, QCD Analysis of the Scale-Invariance of Jets, Phys. Rev. D 86 (2012) 054004 [arXiv:1207.1437] [INSPIRE].ADSGoogle Scholar
  101. [101]
    E. Gerwick, S. Schumann, B. Gripaios and B. Webber, QCD Jet Rates with the Inclusive Generalized kt Algorithms, JHEP 04 (2013) 089 [arXiv:1212.5235] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    A.J. Larkoski, I. Moult and D. Neill, Toward Multi-Differential Cross Sections: Measuring Two Angularities on a Single Jet, arXiv:1401.4458 [INSPIRE].
  104. [104]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].ADSzbMATHGoogle Scholar
  105. [105]
    A.J. Larkoski and J. Thaler, Unsafe but Calculable: Ratios of Angularities in Perturbative QCD, JHEP 09 (2013) 137 [arXiv:1307.1699] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].ADSzbMATHGoogle Scholar
  108. [108]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  109. [109]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  110. [110]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].
  112. [112]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  114. [114]
    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + eevent shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite N c, Nucl. Phys. B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  118. [118]
    A. Banfi and M. Dasgupta, Problems in resumming interjet energy flows with k t clustering, Phys. Lett. B 628 (2005) 49 [hep-ph/0508159] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    Y.L. Dokshitzer, G. Marchesini and G. Oriani, Measuring color flows in hard processes: Beyond leading order, Nucl. Phys. B 387 (1992) 675 [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  121. [121]
    R. Corke and T. Sjöstrand, Interleaved Parton Showers and Tuning Prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    M. Cacciari, G.P. Salam and G. Soyez, The Catchment Area of Jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  125. [125]
    S. Sapeta, Q.C. Zhang and Q.C. Zhang, The mass area of jets, JHEP 06 (2011) 038 [arXiv:1009.1143] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for αs mZ, Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Andrew J. Larkoski
    • 1
  • Simone Marzani
    • 2
  • Gregory Soyez
    • 3
  • Jesse Thaler
    • 1
  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeUnited States
  2. 2.Institute for Particle Physics PhenomenologyDurham UniversityDurhamUnited Kingdom
  3. 3.IPhT, CEA Saclay, CNRS URA 2306Gif-sur-YvetteFrance

Personalised recommendations