Advertisement

Super-Liouville — double Liouville correspondence

  • Leszek Hadasz
  • Zbigniew Jaskólski
Open Access
Article

Abstract

The AGT motivated relation between the tensor product of the \( \mathcal{N} \) = 1 super-Liouville field theory with the imaginary free fermion (SL) and a certain projected tensor product of the real and the imaginary Liouville field theories (LL) is analyzed. Using conformal field theory techniques we give a complete proof of the equivalence in the NS sector. It is shown that the SL-LL correspondence is based on the equivalence of chiral objects including suitably chosen chiral structure constants of all the three Liouville theories involved.

Keywords

Conformal and W Symmetry Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    N. Wyllard, A N −1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Nishioka and Y. Tachikawa, Central charges of para-Liouville and Toda theories from M-5-branes, Phys. Rev. D 84 (2011) 046009 [arXiv:1106.1172] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Belavin, V. Belavin and M. Bershtein, Instantons and 2d Superconformal field theory, JHEP 09 (2011) 117 [arXiv:1106.4001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Instantons on ALE spaces and Super Liouville Conformal Field Theories, JHEP 08 (2011) 056 [arXiv:1106.2505] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Gauge Theories on ALE Space and Super Liouville Correlation Functions, Lett. Math. Phys. 101 (2012) 103 [arXiv:1107.4609] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Y. Ito, Ramond sector of super Liouville theory from instantons on an ALE space, Nucl. Phys. B 861 (2012) 387 [arXiv:1110.2176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Belavin and B. Mukhametzhanov, N = 1 superconformal blocks with Ramond fields from AGT correspondence, JHEP 01 (2013) 178 [arXiv:1210.7454] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Wyllard, Coset conformal blocks and N = 2 gauge theories, arXiv:1109.4264 [INSPIRE].
  11. [11]
    C. Crnkovic, G.M. Sotkov and M. Stanishkov, Renormalization Group Flow for General SU(2) Coset Models, Phys. Lett. B 226 (1989) 297 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    C. Crnkovic, R. Paunov, G.M. Sotkov and M. Stanishkov, Fusions of Conformal Models, Nucl. Phys. B 336 (1990) 637 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M.Y. Lashkevich, Superconformal 2-D minimal models and an unusual coset construction, Mod. Phys. Lett. A 8 (1993) 851 [hep-th/9301093] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M.Y. Lashkevich, Coset construction of minimal models, Int. J. Mod. Phys. A 8 (1993) 5673 [hep-th/9304116] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A.A. Belavin, M.A. Bershtein, B.L. Feigin, A.V. Litvinov and G.M. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, Comm. Math. Phys. 319 1, pp 269-301 (2013) 269 [arXiv:1111.2803] [INSPIRE].
  16. [16]
    Y. Ito, K. Maruyoshi and T. Okuda, Scheme dependence of instanton counting in ALE spaces, JHEP 05 (2013) 045 [arXiv:1303.5765] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    V. Schomerus and P. Suchanek, Liouvilles Imaginary Shadow, arXiv:1210.1856 [INSPIRE].
  18. [18]
    H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Teschner, On the Liouville three point function, Phys. Lett. B 363 (1995) 65 [hep-th/9507109] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A.B. Zamolodchikov, On the three-point function in minimal Liouville gravity, hep-th/0505063 [INSPIRE].
  23. [23]
    A.B. Zamolodchikov, Three-point function in the minimal Liouville gravity, Theor. Math. Phys. 142 (2005) 183 [INSPIRE].CrossRefzbMATHGoogle Scholar
  24. [24]
    D. Harlow, J. Maltz and E. Witten, Analytic Continuation of Liouville Theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    W. McElgin, Notes on Liouville Theory at c ≤ 1, Phys. Rev. D 77 (2008) 066009 [arXiv:0706.0365] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    R.C. Rashkov and M. Stanishkov, Three point correlation functions in N = 1 superLiouville theory, Phys. Lett. B 380 (1996) 49 [hep-th/9602148] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R.H. Poghossian, Structure constants in the N = 1 superLiouville field theory, Nucl. Phys. B 496 (1997) 451 [hep-th/9607120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    T. Fukuda and K. Hosomichi, Super Liouville theory with boundary, Nucl. Phys. B 635 (2002) 215 [hep-th/0202032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Belavin, V. Belavin, A. Neveu and A. Zamolodchikov, Bootstrap in Supersymmetric Liouville Field Theory. I. NS Sector, Nucl. Phys. B 784 (2007) 202 [hep-th/0703084] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M.N. Alfimov, A.A. Belavin and G.M. Tarnopolsky, Coset conformal field theory and instanton counting on C 2 /Z p, JHEP 08 (2013) 134 [arXiv:1306.3938] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    M.A. Bershtein, V.A. Fateev and A.V. Litvinov, Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory, Nucl. Phys. B 847 (2011) 413 [arXiv:1011.4090] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Kato and S. Matsuda, Null Field Construction In Conformal And Superconformal Algebras, proceedings of Conformal Field Theory and Solvable Models, Kyoto Japan 1986, in Advanced Studies in Pure Mathematics 16 (1988) 205.Google Scholar
  33. [33]
    A. Belavin and V. Belavin, AGT conjecture and Integrable structure of Conformal field theory for c = 1, Nucl. Phys. B 850 (2011) 199 [arXiv:1102.0343] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    L. Hadasz, Z. Jaskólski and P. Suchanek, Recursion representation of the Neveu-Schwarz superconformal block, JHEP 03 (2007) 032 [hep-th/0611266] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    P.J. Forrester, Log-Gases and Random Matrices, Princeton University Press, Princeton U.S.A. (2010).zbMATHGoogle Scholar
  36. [36]
    L. Álvarez-Gaumé and P. Zaugg, Structure constants in the N = 1 superoperator algebra, Annals Phys. 215 (1992) 171 [hep-th/9109050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Y. Kitazawa, N. Ishibashi, A. Kato, K. Kobayashi, Y. Matsuo and S. Odake, Operator Product Expansion Coefficients in N = 1 Superconformal Theory and Slightly Relevant Perturbation, Nucl. Phys. B 306 (1988) 425 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    F. Carlson, Sur une classe de series de Taylor, Ph.D. Thesis, Uppsala, Sweden, (1914).Google Scholar
  39. [39]
    E. Barnes, The theory of the double gamma function, Philosophical Transactions of the Royal Society of London - Series A 196 (1901) 265.ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.M. Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Institute of Theoretical PhysicsUniversity of WroclawWroclawPoland

Personalised recommendations