Advertisement

Two-Loop QCD correction to massive spin-2 resonance → 3 gluons

  • Taushif Ahmed
  • Maguni Mahakhud
  • Prakash Mathews
  • Narayan RanaEmail author
  • V. Ravindran
Open Access
Article

Abstract

We present the \( \mathcal{O}\left( {\alpha_s^3} \right) \) virtual QCD corrections to the process hg + g + g due to interference of born and two-loop amplitudes, where h is a massive spin-2 particle and g is the gluon. We assume that the SM fields couple to h through the SM energy momentum tensor. Our result constitutes one of the ingredients to full NNLO QCD contribution to production of a massive spin-2 particle along with a jet in the scattering process at the LHC. In particular, this massive spin-2 could be a KK mode of a ADD graviton in large extra dimensional model or a RS KK mode in warped extra dimensional model or a generic massive spin-2. In addition, it provides an opportunity to study the ultraviolet and infrared structures of QCD amplitudes involving tensorial coupling resulting from energy momentum operator. Using dimensional regularization, we find that infrared poles of this amplitude are in agreement with the proposal by Catani confirming the factorization property of QCD amplitudes with tensorial insertion.

Keywords

QCD Phenomenology NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for Extra Dimensions using diphoton events in 7 TeV proton-proton collisions with the ATLAS detector, Phys. Lett. B 710 (2012) 538 [arXiv:1112.2194] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider, Phys. Rev. Lett. 108 (2012) 111801 [arXiv:1112.0688] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Ellis, D.S. Hwang, V. Sanz and T. You, A Fast Track towards theHiggsSpin and Parity, JHEP 11 (2012) 134 [arXiv:1208.6002] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Ellis, R. Fok, D.S. Hwang, V. Sanz and T. You, DistinguishingHiggsspin hypotheses using γγ and WW decays, Eur. Phys. J. C 73 (2013) 2488 [arXiv:1210.5229] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].ADSGoogle Scholar
  8. [8]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.L. Hewett, Indirect collider signals for extra dimensions, Phys. Rev. Lett. 82 (1999) 4765 [hep-ph/9811356] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Mathews, S. Raychaudhuri and K. Sridhar, Getting to the top with extra dimensions, Phys. Lett. B 450 (1999) 343 [hep-ph/9811501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P. Mathews, S. Raychaudhuri and K. Sridhar, Testing TeV scale quantum gravity using dijet production at the Tevatron, JHEP 07 (2000) 008 [hep-ph/9904232] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    M.C. Kumar, P. Mathews, V. Ravindran and S. Seth, Neutral triple electroweak gauge boson production in the large extra-dimension model at the LHC, Phys. Rev. D 85 (2012) 094507 [arXiv:1111.7063] [INSPIRE].ADSGoogle Scholar
  15. [15]
    L. Xiao-Zhou, D. Peng-Fei, M. Wen-Gan, Z. Ren-You and G. Lei, WWZ/γ production in large extra dimensions model at LHC and ILC, Phys. Rev. D 86 (2012) 095008 [arXiv:1209.6401] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Mathews, V. Ravindran, K. Sridhar and W.L. van Neerven, Next-to-leading order QCD corrections to the Drell-Yan cross section in models of TeV-scale gravity, Nucl. Phys. B 713 (2005) 333 [hep-ph/0411018] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Mathews and V. Ravindran, Angular distribution of Drell-Yan process at hadron colliders to NLO-QCD in models of TeV scale gravity, Nucl. Phys. B 753 (2006) 1 [hep-ph/0507250] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M.C. Kumar, P. Mathews and V. Ravindran, PDF and scale uncertainties of various DY distributions in ADD and RS models at hadron colliders, Eur. Phys. J. C 49 (2007) 599 [hep-ph/0604135] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M.C. Kumar, P. Mathews, V. Ravindran and A. Tripathi, Diphoton signals in theories with large extra dimensions to NLO QCD at hadron colliders, Phys. Lett. B 672 (2009) 45 [arXiv:0811.1670] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.C. Kumar, P. Mathews, V. Ravindran and A. Tripathi, Direct photon pair production at the LHC to order α s in TeV scale gravity models, Nucl. Phys. B 818 (2009) 28 [arXiv:0902.4894] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    N. Agarwal, V. Ravindran, V.K. Tiwari and A. Tripathi, Z boson pair production at the LHC to O(α s) in TeV scale gravity models, Nucl. Phys. B 830 (2010) 248 [arXiv:0909.2651] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    N. Agarwal, V. Ravindran, V.K. Tiwari and A. Tripathi, Next-to-leading order QCD corrections to the Z boson pair production at the LHC in Randall Sundrum model, Phys. Lett. B 686 (2010) 244 [arXiv:0910.1551] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N. Agarwal, V. Ravindran, V.K. Tiwari and A. Tripathi, W + W production in Large extra dimension model at next-to-leading order in QCD at the LHC, Phys. Rev. D 82 (2010) 036001 [arXiv:1003.5450] [INSPIRE].ADSGoogle Scholar
  24. [24]
    N. Agarwal, V. Ravindran, V.K. Tiwari and A. Tripathi, Next-to-leading order QCD corrections to W + W production at the LHC in Randall Sundrum model, Phys. Lett. B 690 (2010)390 [arXiv:1003.5445] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Frederix et al., Diphoton production in the ADD model to NLO + parton shower accuracy at the LHC, JHEP 12 (2012) 102 [arXiv:1209.6527] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Frederix, M.K. Mandal, P. Mathews, V. Ravindran and S. Seth, Drell-Yan, ZZ, W + W production in SM \( \& \) ADD model to NLO + PS accuracy at the LHC, Eur. Phys. J. C 74 (2014) 2745 [arXiv:1307.7013] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Karg, M. Krämer, Q. Li and D. Zeppenfeld, NLO QCD corrections to graviton production at hadron colliders, Phys. Rev. D 81 (2010) 094036 [arXiv:0911.5095] [INSPIRE].ADSGoogle Scholar
  28. [28]
    X. Gao, C.S. Li, J. Gao, J. Wang and R.J. Oakes, Next-to-leading order QCD predictions for graviton and photon associated production in the Large Extra Dimensions model at the LHC, Phys. Rev. D 81 (2010) 036008 [arXiv:0912.0199] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M.C. Kumar, P. Mathews, V. Ravindran and S. Seth, Graviton plus vector boson production to NLO in QCD at the LHC, Nucl. Phys. B 847 (2011) 54 [arXiv:1011.6199] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    M.C. Kumar, P. Mathews, V. Ravindran and S. Seth, Vector boson production in association with KK modes of the ADD model to NLO in QCD at LHC, J. Phys. G 38 (2011) 055001 [arXiv:1004.5519] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. de Florian, M. Mahakhud, P. Mathews, J. Mazzitelli and V. Ravindran, Next-to-Next-to-Leading Order QCD Corrections in Models of TeV-Scale Gravity, JHEP 04 (2014) 028 [arXiv:1312.7173] [INSPIRE].CrossRefGoogle Scholar
  32. [32]
    D. de Florian, M. Mahakhud, P. Mathews, J. Mazzitelli and V. Ravindran, Quark and gluon spin-2 form factors to two-loops in QCD, JHEP 02 (2014) 035 [arXiv:1312.6528] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop QCD helicity amplitudes for g gZ g and g gZ γ, JHEP 04 (2013) 101 [arXiv:1302.2630] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    P. Mathews, V. Ravindran and K. Sridhar, NLO - QCD corrections to e + e hadrons in models of TeV-scale gravity, JHEP 08 (2004) 048 [hep-ph/0405292] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The Planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The Nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133 (1964) B1549.ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].ADSGoogle Scholar
  46. [46]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    V. Ravindran, J. Smith and W.L. van Neerven, Two-loop corrections to Higgs boson production, Nucl. Phys. B 704 (2005) 332 [hep-ph/0408315] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  51. [51]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  56. [56]
    C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A.V. Smirnov, Algorithm FIRE - Feynman Integral Reduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    A. von Manteuffel and C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
  60. [60]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  61. [61]
    R.N. Lee, LiteRed 1.4: a powerful tool for the reduction of the multiloop integrals, arXiv:1310.1145 [INSPIRE].
  62. [62]
    P. Nason, MINT: A Computer program for adaptive Monte Carlo integration and generation of unweighted distributions, arXiv:0709.2085 [INSPIRE].

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Taushif Ahmed
    • 1
  • Maguni Mahakhud
    • 1
  • Prakash Mathews
    • 2
  • Narayan Rana
    • 1
    Email author
  • V. Ravindran
    • 3
  1. 1.Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research InstituteAllahabadIndia
  2. 2.Saha Institute of Nuclear PhysicsKolkataIndia
  3. 3.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations