Advertisement

Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions

  • Johannes M. HennEmail author
  • Kirill Melnikov
  • Vladimir A. Smirnov
Open Access
Article

Abstract

We describe the calculation of all planar master integrals that are needed for the computation of NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. The most complicated representatives of integrals in this class are the two-loop four-point functions where two external lines are on the light-cone and two other external lines have different invariant masses. We compute these and other relevant integrals analytically using differential equations in external kinematic variables and express our results in terms of Goncharov polylogarithms. The case of two equal off-shellnesses, recently considered in ref. [1], appears as a particular case of our general solution.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop master integrals for \( q\overline{q} \)VV: the planar topologies, JHEP 08 (2013) 070 [arXiv:1306.6344] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    CMS collaboration, Measurement of ZZ production cross section at 7 and 8 TeV and anomalous gauge couplings limits in 2ell2nu decay channel, CMS-PAS-SMP-12-016 (2012).
  3. [3]
    CMS collaboration, Measurement of the differential isolated diphoton production cross section in pp collisions at \( \sqrt{s} \) = 7 TeV with the CMS detector, CMS-PAS-SMP-13-001 (2012).
  4. [4]
    CMS collaboration, Measurement of W + W and ZZ production cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE].ADSGoogle Scholar
  5. [5]
    ATLAS collaboration, Measurement of WZ production in proton-proton collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2173 [arXiv:1208.1390] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A.I. Ternov and P.A. Eminov, Decay of a massive neutrino in magnetized electron gas, Phys. Rev. D 87 (2013) 113001 [INSPIRE].ADSGoogle Scholar
  7. [7]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left( {{\alpha^3}} \right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Dawson, I.M. Lewis and M. Zeng, Threshold resummed and approximate next-to-next-to-leading order results for W + W pair production at the LHC, Phys. Rev. D 88 (2013) 054028 [arXiv:1307.3249] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P. Nason and G. Zanderighi, W + W , W Z and ZZ production in the POWHEG-BOX-V2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gg → e e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover and J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering, JHEP 01 (2014) 110 [arXiv:1310.3993] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, Phys. Rev. Lett. 110 (2013) 162003 [arXiv:1301.7310] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross section at Hadron Colliders Through \( O\left( {\alpha_S^4} \right) \), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A.V. Smirnov, Algorithm FIRE - Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The Master differential equations for the two loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [hep-th/9805118] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J.M. Henn, Multiloop Integrals in Dimensional Regularization Made Simple, Phys. Rev. Lett. 110 (2013) 251601.ADSCrossRefGoogle Scholar
  29. [29]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    J.M. Henn and V.A. Smirnov, Analytic results for two-loop master integrals for Bhabha scattering I, JHEP 11 (2013) 041 [arXiv:1307.4083] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Argeri et al., Magnus and Dyson Series for Master Integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    V.A. Smirnov and O.L. Veretin, Analytical results for dimensionally regularized massless on-shell double boxes with arbitrary indices and numerators, Nucl. Phys. B 566 (2000) 469 [hep-ph/9907385] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    C. Anastasiou, T. Gehrmann, C. Oleari, E. Remiddi and J.B. Tausk, The Tensor reduction and master integrals of the two loop massless crossed box with lightlike legs, Nucl. Phys. B 580 (2000) 577 [hep-ph/0003261] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ* → 3 jets: The Planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ* → 3 jets: The Nonplanar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C.G. Papadopoulos, Simplified differential equations approach for Master Integrals, arXiv:1401.6057 [INSPIRE].
  40. [40]
    K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    J.R. Gaunt and W.J. Stirling, Double Parton Scattering Singularity in One-Loop Integrals, JHEP 06 (2011) 048 [arXiv:1103.1888] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. 250 (2012) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Pak and A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals, Eur. Phys. J. C 71 (2011) 1626 [arXiv:1011.4863] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B. Jantzen, A.V. Smirnov and V.A. Smirnov, Expansion by regions: revealing potential and Glauber regions automatically, Eur. Phys. J. C 72 (2012) 2139 [arXiv:1206.0546] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP 11 (2012) 114 [arXiv:1209.2722] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    A.V. Smirnov, FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, arXiv:1312.3186 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Johannes M. Henn
    • 1
    Email author
  • Kirill Melnikov
    • 2
  • Vladimir A. Smirnov
    • 3
  1. 1.Institute for Advanced StudyPrincetonUnited States
  2. 2.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUnited States
  3. 3.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia

Personalised recommendations